[1] |
Ohmiya A. 2011. Diversity of carotenoid composition in flower petals. Japan Agricultural Research Quarterly 45:163−71 doi: 10.6090/jarq.45.163 |
[2] |
Zhu C, Bai C, Sanahuja G, Yuan D, Farré G, et al. 2010. The regulation of carotenoid pigmentation in flowers. Archives of Biochemistry and Biophysics 504:132−41 doi: 10.1016/j.abb.2010.07.028 |
[3] |
Ohmiya A. 2013. Qualitative and quantitative control of carotenoid accumulation in flower petals. Scientia Horticulturae 163:10−9 doi: 10.1016/j.scienta.2013.06.018 |
[4] |
Ohmiya A. 2009. Carotenoid cleavage dioxygenases and their apocarotenoid products in plants. Plant Biotechnology 26:351−58 doi: 10.5511/plantbiotechnology.26.351 |
[5] |
Zheng X, Yang Y, Al-Babili S. 2021. Exploring the diversity and regulation of apocarotenoid metabolic pathways in plants. Frontiers in Plant Science 12:787049 doi: 10.3389/fpls.2021.787049 |
[6] |
Wang Y, Zhang C, Dong B, Fu J, Hu S, et al. 2018. Carotenoid accumulation and its contribution to flower coloration of Osmanthus fragrans. Frontiners in Plant Science 9:1499 doi: 10.3389/fpls.2018.01499 |
[7] |
Li X, Tang D, Du H, Shi Y. 2018. Transcriptome sequencing and biochemical analysis of perianths and coronas reveal flower color formation in Narcissus pseudonarcissus. International Journal of Molecular Sciences 19:4006 doi: 10.3390/ijms19124006 |
[8] |
Auldridge ME, Block A, Vogel JT, Dabney-Smith C, Mila I, et al. 2006. Characterization of three members of the Arabidopsis carotenoid cleavage dioxygenase family demonstrates the divergent roles of this multifunctional enzyme family. The Plant Journal 45:982−93 doi: 10.1111/j.1365-313X.2006.02666.x |
[9] |
Bouvier F, Suire C, Mutterer J, Camara B. 2003. Oxidative remodeling of chromoplast carotenoids: identification of the carotenoid dioxygenase CsCCD and CsZCD genes involved in Crocus secondary metabolite biogenesis. The Plant Cell 15:47−62 doi: 10.1105/tpc.006536 |
[10] |
Simkin AJ, Schwartz SH, Auldridge M, Taylor MG, Klee HJ. 2004. The tomato carotenoid cleavage dioxygenase 1 genes contribute to the formation of the flavor volatiles β-ionone, pseudoionone, and geranylacetone. The Plant Journal 40:882−92 doi: 10.1111/j.1365-313X.2004.02263.x |
[11] |
Floss DS, Walter MH. 2009. Role of carotenoid cleavage dioxygenase 1 (CCD1) in apocarotenoid biogenesis revisited. Plant Signaling & Behavior 4:172−75 doi: 10.4161/psb.4.3.7840 |
[12] |
Sun Z, Hans J, Walter MH, Matusova R, Beekwilder J, et al. 2008. Cloning and characterisation of a maize carotenoid cleavage dioxygenase (ZmCCD1) and its involvement in the biosynthesis of apocarotenoids with various roles in mutualistic and parasitic interactions. Planta 228:789−801 doi: 10.1007/s00425-008-0781-6 |
[13] |
Yahyaa M, Berim A, Isaacson T, Marzouk S, Bar E, et al. 2015. Isolation and functional characterization of carotenoid cleavage dioxygenase-1 from Laurus nobilis L. (Bay Laurel) fruits. Journal of Agricultural and Food Chemistry 63:8275−82 doi: 10.1021/acs.jafc.5b02941 |
[14] |
Huang FC, Horváth G, Molnár P, Turcsi E, Deli J, et al. 2009. Substrate promiscuity of RdCCD1, a carotenoid cleavage oxygenase from Rosa damascena. Phytochemistry 70:457−64 doi: 10.1016/j.phytochem.2009.01.020 |
[15] |
Auldridge ME, McCarty DR, Klee HJ. 2006. Plant carotenoid cleavage oxygenases and their apocarotenoid products. Current Opinion in Plant Biology 9:315−21 doi: 10.1016/j.pbi.2006.03.005 |
[16] |
Varghese R, Kumar SU, Doss CGP, Ramamoorthy S. 2021. Unraveling the versatility of CCD4: metabolic engineering, transcriptomic and computational approaches. Plant Science 310:110991 doi: 10.1016/j.plantsci.2021.110991 |
[17] |
Ohmiya A, Kishimoto S, Aida R, Yoshioka S, Sumitomo K. 2006. Carotenoid cleavage dioxygenase (CmCCD4a) contributes to white color formation in chrysanthemum petals. Plant Physiology 142:1193−201 doi: 10.1104/pp.106.087130 |
[18] |
Watanabe K, Oda-Yamamizo C, Sage-Ono K, Ohmiya A, Ono M. 2018. Alteration of flower colour in Ipomoea nil through CRISPR/Cas9-mediated mutagenesis of carotenoid cleavage dioxygenase 4. Transgenic Research 27:25−38 doi: 10.1007/s11248-017-0051-0 |
[19] |
Han Y, Lu M, Yue S, Li K, Dong M, et al. 2022. Comparative methylomics and chromatin accessibility analysis in Osmanthus fragrans uncovers regulation of genic transcription and mechanisms of key floral scent production. Horticulture Research 9:uhac096 doi: 10.1093/hr/uhac096 |
[20] |
Hai NTL, Masuda JI, Miyajima I, Thien NQ, Mojtahedi N, et al. 2012. Involvement of carotenoid cleavage dioxygenase 4 gene in tepalcolor change in Lilium brownii var. colchesteri. Journal of the Japanese Society for Horticultural Science 81:366−73 doi: 10.2503/jjshs1.81.366 |
[21] |
Han Y, Wang X, Chen W, Dong M, Yuan W, et al. 2014. Differential expression of carotenoid-related genes determines diversified carotenoid coloration in flower petal of Osmanthus fragrans. Tree Genetics & Genomes 10:329−38 doi: 10.1007/s11295-013-0687-8 |
[22] |
Qian J, Jiang L, Qing H, Chen J, Wan Z, et al. 2022. ZeMYB9 regulates cyanidin synthesis by activating the expression of flavonoid 3'-hydroxylase gene in Zinnia elegans. Frontiers in Plant Science 13:981086 doi: 10.3389/fpls.2022.981086 |
[23] |
Qian J, Lai W, Jiang L, Zhan H, Zhai M, et al. 2021. Association between differential gene expression and anthocyanin biosynthesis underlying the diverse array of petal colors in Zinnia elegans. Scientia Horticulturae 277:109809 doi: 10.1016/j.scienta.2020.109809 |
[24] |
Qing H, Qian J, Chen J, Jiang L, Fu J, et al. 2022. Carotenoid analysis and functional characterization of lycopene cyclases in Zinnia elegans L. Industrial Crops and Products 188:115724 doi: 10.1016/j.indcrop.2022.115724 |
[25] |
Cunningham FX Jr, Gantt E. 2007. A portfolio of plasmids for identification and analysis of carotenoid pathway enzymes: Adonis aestivalis as a case study. Photosynthesis Research 92:245−59 doi: 10.1007/s11120-007-9210-0 |
[26] |
Lichtenthaler HK. 1987. Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. Methods in Enzymology 148:350−82 doi: 10.1016/0076-6879(87)48036-1 |
[27] |
Kumar S, Stecher G, Li M, Knyaz C, Tamura K. 2018. MEGA X: molecular evolutionary genetics analysis across computing platforms. Molecular Biology and Evolution 35:1457−549 doi: 10.1093/molbev/msy096 |
[28] |
Cunningham FX Jr, Sun Z, Chamovitz D, Hirschberg J, Gantt E. 1994. Molecular structure and enzymatic function of lycopene cyclase from the cyanobacterium Synechococcus sp strain PCC7942. The Plant Cell 6:1107−21 doi: 10.1105/tpc.6.8.1107 |
[29] |
Cunningham FX Jr, Gantt E. 2005. A study in scarlet: enzymes of ketocarotenoid biosynthesis in the flowers of Adonis aestivalis. The Plant Journal 41:478−92 doi: 10.1111/j.1365-313X.2004.02309.x |
[30] |
Cunningham FX Jr, Pogson B, Sun Z, McDonald KA, DellaPenna D, et al. 1996. Functional analysis of the beta and epsilon lycopene cyclase enzymes of Arabidopsis reveals a mechanism for control of cyclic carotenoid formation. The Plant Cell 8:1613−26 doi: 10.1105/tpc.8.9.1613 |
[31] |
Livak KJ, Schmittgen TD. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCᴛ method. Methods 25:402−8 doi: 10.1006/meth.2001.1262 |
[32] |
Ahrazem O, Trapero A, Gómez MD, Rubio-Moraga A, Gómez-Gómez L. 2010. Genomic analysis and gene structure of the plant carotenoid dioxygenase 4 family: a deeper study in Crocus sativus and its allies. Genomics 96:239−50 doi: 10.1016/j.ygeno.2010.07.003 |
[33] |
Kiser PD, Farquhar ER, Shi W, Sui X, Chance MR, et al. 2012. Structure of RPE65 isomerase in a lipidic matrix reveals roles for phospholipids and iron in catalysis. Proceedings of the National Academy of Sciences of the United States of America 109:E2747−E2756 doi: 10.1073/pnas.1212025109 |
[34] |
Kloer DP, Schulz GE. 2006. Structural and biological aspects of carotenoid cleavage. Cellular and Molecular Life Sciences 63:2291−303 doi: 10.1007/s00018-006-6176-6 |
[35] |
Wang Y, Xu J, Liu A. 2022. Identification of the carotenoid cleavage dioxygenase genes and functional analysis reveal DoCCD1 is potentially involved in beta-ionone formation in Dendrobium officinale. Frontiers in Plant Science 13:967819 doi: 10.3389/fpls.2022.967819 |
[36] |
Jia K, Baz L, Al-Babili S. 2018. From carotenoids to strigolactones. Journal of Experimental Botany 69:2189−204 doi: 10.1093/jxb/erx476 |
[37] |
Wang J, Zhang N, Zhao M, Jing T, Jin J, et al. 2020. Carotenoid cleavage dioxygenase 4 catalyzes the formation of carotenoid-derived volatile β-ionone during tea (Camellia sinensis) withering. Journal of Agricultural and Food Chemistry 68:1684−90 doi: 10.1021/acs.jafc.9b07578 |
[38] |
Gao J, Yang S, Tang K, Li G, Gao X, et al. 2021. GmCCD4 controls carotenoid content in soybeans. Plant Biotechnology Journal 19:801−13 doi: 10.1111/pbi.13506 |
[39] |
Bruno M, Beyer P, Al-Babili S. 2015. The potato carotenoid cleavage dioxygenase 4 catalyzes a single cleavage of β-ionone ring-containing carotenes and non-epoxidated xanthophylls. Archives of Biochemistry and Biophysics 572:126−33 doi: 10.1016/j.abb.2015.02.011 |
[40] |
Rodrigo MJ, Alquézar B, Alós E, Medina V, Carmona L, et al. 2013. A novel carotenoid cleavage activity involved in the biosynthesis of Citrus fruit-specific apocarotenoid pigments. Journal of Experimental Botany 64:4461−78 doi: 10.1093/jxb/ert260 |
[41] |
Ma G, Zhang L, Matsuta A, Matsutani K, Yamawaki K, et al. 2013. Enzymatic formation of β-citraurin from β-cryptoxanthin and zeaxanthin by carotenoid cleavage dioxygenase4 in the flavedo of citrus fruit. Plant Physiology 163:682−95 doi: 10.1104/pp.113.223297 |
[42] |
Zheng X, Zhu K, Sun Q, Zhang W, Wang X, et al. 2019. Natural variation in CCD4 promoter underpins species-specific evolution of red coloration in citrus peel. Molecular Plant 12:1294−307 doi: 10.1016/j.molp.2019.04.014 |
[43] |
Pacheco SDG, Gasparin AT, Jesus CHA, Sotomaior BB, Ventura ACSSB, et al. 2019. Antinociceptive and anti-inflammatory effects of bixin, a carotenoid extracted from the seeds of Bixa orellana. Planta Medica 85:1216−24 doi: 10.1055/a-1008-1238 |
[44] |
Xu Z, Pu X, Gao R, Demurtas OC, Fleck SJ, et al. 2020. Tandem gene duplications drive divergent evolution of caffeine and crocin biosynthetic pathways in plants. BMC Biology 18:63 doi: 10.1186/s12915-020-00795-3 |
[45] |
He L, Cheng L, Wang J, Liu J, Cheng J, et al. 2022. Carotenoid cleavage dioxygenase 1 catalyzes lutein degradation to influence carotenoid accumulation and color development in foxtail millet grains. Journal of Agricultural and Food Chemistry 70:9283−94 doi: 10.1021/acs.jafc.2c01951 |
[46] |
Ding A, Bao F, Cheng W, Cheng T, Zhang Q. 2023. Phylogeny of PmCCD gene family and expression analysis of flower coloration and stress response in Prunus mume. International Journal of Molecular Sciences 24:13950 doi: 10.3390/ijms241813950 |
[47] |
Floss DS, Schliemann W, Schmidt J, Strack D, Walter MH. 2008. RNA interference-mediated repression of MtCCD1 in mycorrhizal roots of Medicago truncatula causes accumulation of C27 apocarotenoids, shedding light on the functional role of CCD1. Plant Physiology 148:1267−82 doi: 10.1104/pp.108.125062 |
[48] |
Bhat ZY, Mohiuddin T, Kumar A, López-Jiménez AJ, Ashraf N. 2021. Crocus transcription factors CstMYB1 and CstMYB1R2 modulate apocarotenoid metabolism by regulating carotenogenic genes. Plant Molecular Biology 107:49−62 doi: 10.1007/s11103-021-01180-6 |
[49] |
Lu C, Qu J, Deng C, Liu F, Zhang F, et al. 2022. The transcription factor complex CmAP3-CmPI-CmUIF1 modulates carotenoid metabolism by directly regulating carotenogenic gene CmCCD4a-2 in chrysanthemum. Horticulture Research 19:uhac020 doi: 10.1093/hr/uhac020 |
[50] |
Huang H, Gao X, Gao X, Zhang S, Zheng Y, et al. 2022. Flower color mutation, pink to orange, through CmGATA4 - CCD4a-5 module regulates carotenoids degradation in chrysanthemum. Plant Science 322:111290 doi: 10.1016/j.plantsci.2022.111290 |
[51] |
Han Y, Wang H, Wang X, Li K, Dong M, et al. 2019. Mechanism of floral scent production in Osmanthus fragrans and the production and regulation of its key floral constituents, β-ionone and linalool. Horticulture Research 6:106 doi: 10.1038/s41438-019-0189-4 |