[1]

He Z, Lv Y, Lu L, Guan W. 2019. Constructing spatiotemporal speed contour diagrams: using rectangular or non-rectangular parallelogram cells? Transportmetrica B Transport Dynamics 7:44−60

doi: 10.1080/21680566.2017.1320774
[2]

Wang Y, Zhao M, Yu X, Hu Y, Zheng P, et al. 2022. Real-time joint traffic state and model parameter estimation on freeways with fixed sensors and connected vehicles: State-of-the-art overview, methods, and case studies. Transportation Research Part C: Emerging Technologies 134:103444

doi: 10.1016/j.trc.2021.103444
[3]

He Z. 2023. Refining Time-Space Traffic Diagrams: A Simple Multiple Linear Regression Model. IEEE Transactions on Intelligent Transportation Systems 00:1−11

doi: 10.1109/TITS.2023.3316593
[4]

Chen C, Skabardonis A, Varaiya P. 2004. Systematic identification of freeway bottlenecks. Transportation Research Record: Journal of the Transportation Research Board 1867:46−52

doi: 10.3141/1867-06
[5]

Wan Q, Peng G, Li Z, Inomata FHT. 2020. Spatiotemporal trajectory characteristic analysis for traffic state transition prediction near expressway merge bottleneck. Transportation Research Part C Emerging Technologies 117:102682

doi: 10.1016/j.trc.2020.102682
[6]

Ramezani M, Geroliminis N. 2015. Queue Profile Estimation in Congested Urban Networks with Probe Data. Computer-Aided Civil and Infrastructure Engineering 30:414−32

doi: 10.1111/mice.12095
[7]

Zhang Z, Wang Y, Chen P, He Z, Yu G. 2017. Probe data-driven travel time forecasting for urban expressways by matching similar spatiotemporal traffic patterns. Transportation Research Part C Emerging Technologies 85:476−93

doi: 10.1016/j.trc.2017.10.010
[8]

Chen H, Rakha HA, Sadek S. 2011. Real-time freeway traffic state prediction: A particle filter approach. 14th International IEEE Conference on Intelligent Transportation Systems (ITSC), Washington, DC, USA, 5–7 October 2011. USA: IEEE. pp. 626–31. https://doi.org/10.1109/ITSC.2011.6082873

[9]

Zhang Z, Wang Y, Chen P, He Z, Yu G. 2017. Prediction of Urban Expressway Travel Time through Matching Similar Spatiotemporal Traffic Patterns. Transportation Research Board 96th Annual Meeting, Washington DC, USA, 1−12 Jan 2017. Paper number 17-02434. USA: TRB. https://trid.trb.org/view/1438014

[10]

Yildirimoglu M, Geroliminis N. 2013. Experienced travel time prediction for congested freeways. Transportation Research Part B:Methodological 53:45−63

doi: 10.1016/j.trb.2013.03.006
[11]

Cassidy MJ. 1998. Bivariate relations in nearly stationary highway traffic. Transportation Research Part B: Methodological 32(1):49−59

doi: 10.1016/S0191-2615(97)00012-X
[12]

Lu L, Wang J, He Z, Chan CY. 2018. Real-time estimation of freeway travel time with recurrent congestion based on sparse detector data. IET Intelligent Transport Systems 12:2−11

doi: 10.1049/iet-its.2016.0356
[13]

He Z, Zhang W, Jia N. 2020. Estimating Carbon Dioxide Emissions of Freeway Traffic: A Spatiotemporal Cell-Based Model. IEEE Transactions on Intelligent Transportation Systems 21(5):1976−86

doi: 10.1109/TITS.2019.2909316
[14]

Ferreira N, Poco J, Vo HT, Freire J, Silva CT. 2013. Visual exploration of big spatio-temporal urban data: A study of New York city taxi trips. IEEE Transactions on Visualization and Computer Graphics 19(12):2149−58

doi: 10.1109/TVCG.2013.226
[15]

Andrienko G, Andrienko N. 2008. Spatio-temporal aggregation for visual analysis of movements. Proceedings of the 2008 IEEE symposium on visual analytics science and technology, Columbus, OH, USA, 19–24 October 2008. USA: IEEE. pp. 51–58. https://doi.org/10.1109/VAST.2008.4677356

[16]

Laval JA. 2011. Hysteresis in traffic flow revisited: An improved measurement method. Transportation Research Part B:Methodological 45:385−91

doi: 10.1016/j.trb.2010.07.006
[17]

He Z, He S, Guan W. 2015. A figure-eight hysteresis pattern in macroscopic fundamental diagrams and its microscopic causes. Transportation Letters 7:133−42

doi: 10.1179/1942787514Y.0000000041
[18]

Ma X, Dai Z, He Z, Ma J, Wang Y. 2017. Learning traffic as images: A deep convolutional neural network for large-scale transportation network speed prediction. Sensors 17:818

doi: 10.3390/s17040818
[19]

He Z, Zheng L, Chen P, Guan W. 2017. Mapping to Cells: A Simple Method to Extract Traffic Dynamics from Probe Vehicle Data. Computer-aided Civil & Infrastructure Engineering 32:252−67

doi: 10.1111/mice.12251
[20]

Treiber M, Helbing D. 2002. Reconstructing the spatio-temporal traffic dynamics from stationary detector data. Cooper@tive Tr@nsport@tion Dyn@mics 1(3):3.1-3.24 www.mtreiber.de/publications/Reconstructing_the_spatio-temporal_traffic_dynamic.pdf

[21]

Papadopoulou S, Roncoli C, Bekiaris-Liberis N, Papamichail I, Papageorgiou M. 2018. Microscopic simulation-based validation of a per-lane traffic state estimation scheme for highways with connected vehicles. Transportation Research Part C: Emerging Technologies 86:441−52

doi: 10.1016/j.trc.2017.11.012
[22]

Zhai C, Wu W, Xiao Y. 2023. Modeling continuous traffic flow with the average velocity effect of multiple vehicles ahead on gyroidal roads. Digital Transportation and Safety 2(2):124−38

doi: 10.48130/DTS-2023-0010
[23]

Fu X, Liu J, Huang Z, Hainen A, Khattak AJ. 2023. LSTM-based lane change prediction using Waymo open motion dataset: The role of vehicle operating space. Digital Transportation and Safety 2(2):112−23

doi: 10.48130/DTS-2023-0009
[24]

Wang Y, Papageorgiou M, Messmer A. 2007. Real-time freeway traffic state estimation based on extended Kalman filter: A case study. Transportation Science 41(2):167−81

doi: 10.1287/trsc.1070.0194
[25]

Coifman B. 2002. Estimating travel times and vehicle trajectories on freeways using dual loop detectors. Transportation Research Part A: Policy and Practice 36(4):351−64

doi: 10.1016/S0965-8564(01)00007-6
[26]

Seo T, Bayen AM, Kusakabe T, Asakura Y. 2017. Traffic state estimation on highway: A comprehensive survey. Annual reviews in control 43:128−51

doi: 10.1016/j.arcontrol.2017.03.005
[27]

Quddus MA, Ochieng WY, Noland RB. 2007. Current map-matching algorithms for transport applications: State-of-the art and future research directions. Transportation Research Part C: Emerging Technologies 15:312−28

doi: 10.1016/j.trc.2007.05.002
[28]

Chiabaut N, Buisson C, Leclercq L. 2009. Fundamental diagram estimation through passing rate measurements in congestion. IEEE Transactions on Intelligent Transportation Systems 10:355−59

doi: 10.1109/TITS.2009.2018963
[29]

Jiang X, Zheng C, Tian Y, Liang R. 2015. Large-scale taxi O/D visual analytics for understanding metropolitan human movement patterns. Journal of Visualization 18:185−200

doi: 10.1007/s12650-015-0278-x
[30]

Wang Z, Lu M, Yuan X, Zhang J, Van De Wetering, H. 2013. Visual traffic jam analysis based on trajectory data. IEEE Transactions on Visualization and Computer Graphics 19:2159−68

doi: 10.1109/TVCG.2013.228
[31]

Wang Z, Ye T, Lu M, Yuan X, Qu H, et al. 2014. Visual exploration of sparse traffic trajectory data. IEEE Transactions on Visualization and Computer Graphics 20:1813−22

doi: 10.1109/TVCG.2014.2346746
[32]

He Z, Zheng L. 2017. Visualizing traffic dynamics based on floating car data. Journal of Transportation Engineering, Part A: Systems 143:04017005

doi: 10.1061/JTEPBS.0000024
[33]

Edie LC. 1963. Discussion of traffic stream measurements and definitions. Proceedings of the 2nd International Symposium on the Theory of Traffic Flow, Port of New York Authority, New York, 1st Jan 1963. New York: Port of New York Authority. pp.139−54.

[34]

Laval JA, Leclercq L. 2010. A mechanism to describe the formation and propagation of stop-and-go waves in congested freeway traffic. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciencesnces 368:4519−41

doi: 10.1098/rsta.2010.0138
[35]

Dahiya G, Asakura Y, Nakanishi W. 2022. Analysis of the single-regime speed-density fundamental relationships for varying spatiotemporal resolution using Zen Traffic Data. Asian Transport Studies 8:100066

doi: 10.1016/j.eastsj.2022.100066