[1] |
Zhang H, Zhu J, Gong Z, Zhu JK. 2022. Abiotic stress responses in plants. Nature Reviews Genetics 23:104−19 doi: 10.1038/s41576-021-00413-0 |
[2] |
Gong Z, Xiong L, Shi H, Yang S, Herrera-Estrella LR, et al. 2020. Plant abiotic stress response and nutrient use efficiency. Science China Life Sciences 63:635−74 doi: 10.1007/s11427-020-1683-x |
[3] |
Waadt R, Seller CA, Hsu PK, Takahashi Y, Munemasa S, et a;. 2022. Plant hormone regulation of abiotic stress responses. Nature Reviews Molecular Cell Biology 23:680−94 doi: 10.1038/s41580-022-00479-6 |
[4] |
Horvath DP, Anderson JV, Chao WS, Foley ME. 2003. Erratum: Knowing when to grow: Signals regulating bud dormancy. Trends in Plant Science 8:534−40 doi: 10.1016/j.tplants.2003.09.013 |
[5] |
Horvath D. 2009. Common mechanisms regulate flowering and dormancy. Plant Science 177:523−31 doi: 10.1016/j.plantsci.2009.09.002 |
[6] |
Picotte JJ, Rhode JM, Cruzan MB. 2008. Leaf morphological responses to variation in water availability for plants in the Piriqueta caroliniana complex. Plant Ecology 200:267−75 doi: 10.1007/s11258-008-9451-9 |
[7] |
Picotte JJ, Rosenthal DM, Rhode JM, Cruzan MB. 2007. Plastic responses to temporal variation in moisture availability: Consequences for water use efficiency and plant performance. Oecologia 153:821−32 doi: 10.1007/s00442-007-0794-z |
[8] |
Sedej TT, ErznoŽnik T, Rovtar J. 2020. Effect of UV radiation and altitude characteristics on the functional traits and leaf optical properties in Saxifraga hostii at the alpine and montane sites in the Slovenian Alps. Photochemical & Photobiological Sciences 19:180−92 doi: 10.1039/c9pp00032a |
[9] |
Munné-Bosch S, Cotado A, Morales M, Fleta-Soriano E, Villellas J, et al. 2016. Adaptation of the long-lived monocarpic perennial Saxifraga longifolia to high altitude. Plant Physiology 172:765−75 doi: 10.1104/pp.16.00877 |
[10] |
Zheng H, Fu X, Shao J, Tang Y, Yu M, et al. 2023. Transcriptional regulatory network of high-value active ingredients in medicinal plants. Trends in Plant Science 28:429−46 doi: 10.1016/j.tplants.2022.12.007 |
[11] |
Yang L, Wen KS, Ruan X, Zhao YX, Wei F, et al. 2018. Response of Plant Secondary Metabolites to Environmental Factors. Molecules 23:762 doi: 10.3390/molecules23040762 |
[12] |
Pant P, Pandey S, Dall'Acqua S. 2021. The influence of environmental conditions on secondary metabolites in medicinal plants: A literature review. Chemistry & Biodiversity 18:e2100345 doi: 10.1002/cbdv.202100345 |
[13] |
Isah T. 2019. Stress and defense responses in plant secondary metabolites production. Biological Research 52:39 doi: 10.1186/s40659-019-0246-3 |
[14] |
Dalcorso G, Manara A, Piasentin S, Furini A. 2014. Nutrient metal elements in plants. Metallomics 6:1770−88 doi: 10.1039/C4MT00173G |
[15] |
Liang G. 2022. Iron uptake, signaling, and sensing in plants. Plant Communications 3:100349 doi: 10.1016/j.xplc.2022.100349 |
[16] |
Brumbarova T, Bauer P, Ivanov R. 2015. Molecular mechanisms governing Arabidopsis iron uptake. Trends in Plant Science 20:124−33 doi: 10.1016/j.tplants.2014.11.004 |
[17] |
Darbani B, Briat JF, Holm PB, Husted S, Noeparvar S, et al. 2013. Dissecting plant iron homeostasis under short and long-term iron fluctuations. Biotechnology Advances 31:1292−307 doi: 10.1016/j.biotechadv.2013.05.003 |
[18] |
Halliwell B, Gutteridge JMC. 1992. Biologically relevant metal ion-dependent hydroxyl radical generation. FEBS Letters 307:108−12 doi: 10.1016/0014-5793(92)80911-y |
[19] |
Ma HC, McConchie JA. 2001. The dry-hot valleys and forestation in southwest China. Journal of Forestry Research 12:35−39 doi: 10.1007/BF02856797 |
[20] |
Zheng T, Wang M, Zhan J, Sun W, Yang Q, et al. 2020. Ferrous iron-induced increases in capitate glandular trichome density and upregulation of CbHO-1 contributes to increases in blinin content in Conyza blinii. Planta 252:81 doi: 10.1007/s00425-020-03492-1 |
[21] |
Yang M, Zheng T, Zhan J, Wang M, Sun W, et al. 2022. Conyza blinii responds to the changes of exogenous iron through auxin-terpenoids metabolism pathway. Journal of Plant Interactions 17:485−95 doi: 10.1080/17429145.2022.2053596 |
[22] |
Zheng T, Zhan J, Wang M, Sun W, Yan J, et al. 2021. Fe induces a dynamic and biased allocation of material flux within terpenoid metabolism is controlled by CbNudix in Conyza blinii. Plant and Soil 467:421−36 doi: 10.1007/s11104-021-05110-9 |
[23] |
Sun WJ, Zhan JY, Zheng TR, Sun R, Wang T, et al. 2018. The jasmonate-responsive transcription factor CbWRKY24 regulates terpenoid biosynthetic genes to promote saponin biosynthesis in Conyza blinii H. Lév. Journal of Genetics 97:1379−88 doi: 10.1007/s12041-018-1026-5 |
[24] |
van den Brûle S, Smart CC. 2002. The plant PDR family of ABC transporters. Planta 216:95−106 doi: 10.1007/s00425-002-0889-z |
[25] |
Thilakarathna MS, Cope KR. 2021. Split-root assays for studying legume-rhizobia symbioses, rhizodeposition, and belowground nitrogen transfer in legumes. Journal of Experimental Botany 72:5285−99 doi: 10.1093/jxb/erab198 |
[26] |
Hidalgo Á, Ruiz-Sainz JE, Vinardell JM. 2018. A new, nondestructive, split-root system for local and systemic plant responses studies with soybean. In Host-Pathogen Interactions, eds. Medina C, López-Baena F. vol. 1734. New York: Humana Press. pp. 297-306. |
[27] |
Shabnam R, Iqbal MT. 2018. Understanding phosphorus status and P translocation within wheat plant in a split-root system. Eurasian Journal of Soil Science 7:30−42 doi: 10.18393/ejss.334868 |
[28] |
Luo Z, Kong X, Zhang Y, Li W, Zhang D, et al. 2019. Leaf-derived jasmonate mediates water uptake from hydrated cotton roots under partial root-zone irrigation. Plant Physiology 180:1660−76 doi: 10.1104/pp.19.00315 |
[29] |
Shen Q, Zhang L, Liao Z, Wang S, Yan T, et al. 2018. The genome of Artemisia annua provides insight into the evolution of asteraceae family and artemisinin biosynthesis. Molecular Plant 11:776−88 doi: 10.1016/j.molp.2018.03.015 |
[30] |
Liao B, Shen X, Xiang l, Guo S, Chen S, et al. 2022. Allele-aware chromosome-level genome assembly of Artemisia annua reveals the correlation between ADS expansion and artemisinin yield. Molecular Plant 15:1310−28 doi: 10.1016/j.molp.2022.05.013 |
[31] |
Rai M, Rai A, Kawano N, Yoshimatsu K, Takahashi H, et al. 2017. De novo RNA sequencing and expression analysis of Aconitum carmichaelii to analyze key genes involved in the biosynthesis of diterpene alkaloids. Molecules 22:2155 doi: 10.3390/molecules22122155 |
[32] |
Acamovic T, Brooker J. 2005. Biochemistry of plant secondary metabolites and their effects in animals. The Proceedings of the Nutrition Society 64:403−12 doi: 10.1079/PNS2005449 |
[33] |
Wink M. 1987. Physiology of the accumulation of secondary metabolites with special reference to alkaloids. In Cell Culture in Phytochemistry, eds. Constabel F, Vasil IK. Academic Press. pp. 17-42. https://doi.org/10.1016/B978-0-12-715004-8.50008-9 |
[34] |
Vranová E, Coman Schmid D, Gruissem W. 2013. Network analysis of the MVA and MEP pathways for isoprenoid synthesis. Annual Review of Plant Biology 64:665−700 doi: 10.1146/annurev-arplant-050312-120116 |
[35] |
Tholl D. 2015. Biosynthesis and Biological Functions of Terpenoids in Plants. In Biotechnology of Isoprenoids. Advances in biochemical engineering/biotechnology, eds. Schrader J, Bohlmann J. Vol. 148. Switzerland: Springer, Cham. pp. 63−106. https://doi.org/10.1007/ 10_2014_295 |
[36] |
Boncan DAT, Tsang SSK, Li C, Lee IHT, Lam HM, et al. 2020. Terpenes and Terpenoids in Plants: Interactions with Environment and Insects. International Journal of Molecular Sciences 21:7382 doi: 10.3390/ijms21197382 |
[37] |
Nagegowda DA, Gupta P. 2020. Advances in the biosynthesis, regulation, and metabolic engineering of plant specialized terpenoids. Plant Science 294:110457 doi: 10.1016/j.plantsci.2020.110457 |
[38] |
Crouzet J, Roland J, Peeters E, Trombik T, Ducos E, et al. 2013. NtPDR1, a plasma membrane ABC transporter from Nicotiana tabacum, is involved in diterpene transport. Plant Molecular Biology 82:181−92 doi: 10.1007/s11103-013-0053-0 |
[39] |
Fu X, Shi P, He Q, Shen Q, Tang Y, et al. 2017. AaPDR3, a PDR transporter 3, is involved in sesquiterpene β-caryophyllene transport in Artemisia annua. Frontiers in Plant Science 8:723 doi: 10.3389/fpls.2017.00723 |