[1]

British Standard Institution. 1987. ISO 8421-1: 1987 Glossary of Terms Associated with Fire-Part 1: General Terms and Phenomena of Fire.

[2]

Drysdale DD. 2011. An Introduction to Fire Dynamics. 3rd Edition. UK: John Wiley and Sons. https://doi.org/10.1002/9781119975465

[3]

Gross D, Loftus JJ, Robertson AF. 1967. Method for measuring smoke from burning materials. Symposium on Fire Test Methods — Restraint & Smoke 1966. West Conshohocken, PA: ASTM International. pp. 166−204. https://doi.org/10.1520/stp41310s

[4]

National Fire Protection Association (NFPA). 2000. NFPA 92B Guide for Smoke Management Systems in Malls, Atria, and Large Areas. Quincy: National Fire Protection Association. https://studylib.net/doc/25193100/a-nfpa92b

[5]

Barry TF. 2016. Risk-informed industrial fire protection engineering. In SFPE Handbook of Fire Protection Engineering, eds. Hurley MJ, Gottuk D, Hall JR, Harada K, Kuligowski E, et al. New York: Springer. pp. 3183−210. https://doi.org/10.1007/978-1-4939-2565-0_83

[6]

Hartzell GE. 1991. Combustion products and their effects on life safety. In Fire protection handbook. 17th Edition. Quincy, MA: National Fire Protection Association. pp. 11−34.

[7]

Gann RG, Babrauskas V, Peacock RD, Hall JR Jr. 1994. Fire conditions for smoke toxicity measurement. Fire and Materials 18(3):193−99

doi: 10.1002/fam.810180306
[8]

Alpert RL. 2016. Ceiling jet flows. In SFPE Handbook of Fire Protection Engineering, eds. Hurley MJ, Gottuk D, Hall JR, Harada K, Kuligowski E, et al. New York: Springer. pp. 429−54. https://doi.org/10.1007/978-1-4939-2565-0_14

[9]

Zeng Y, Wong HY, Węgrzyński W, Huang X. 2023. Revisiting alpert's correlations: Numerical exploration of early-stage building fire and detection. Fire Technology 59(5):2925−48

doi: 10.1007/s10694-023-01461-0
[10]

Klote J, Milke J, Beyler C. 1993. Review of design of smoke management systems. Journal of Fire Protection Engineering 5(1):33−34

doi: 10.1177/104239159300500105
[11]

Węgrzyński W, Lipecki T. 2018. Wind and fire coupled modelling — Part I: Literature review. Fire Technology 54(5):1405−42

doi: 10.1007/s10694-018-0748-5
[12]

Węgrzyński W, Lipecki T, Krajewski G. 2018. Wind and fire coupled modelling—Part II: Good practice guidelines. Fire Technology 54(5):1443−85

doi: 10.1007/s10694-018-0749-4
[13]

CIBSE. 2019. CIBSE Guide E Fire safety engineering. London: The Chartered Institution of Building Services Engineers.

[14]

Morgan HP. 1999. Design methodologies for smoke and heat exhaust ventilation (BR 368). UK: IHS BRE Press.

[15]

Fire Services Department HKSAR. 2012. Codes of Practice For Minimum Fire Service Installations and Equipment and Inspection, Testing and Maintenance of Installations and Equipment. Hong Kong, China: Fire Services Department. pp. 1–187. www.hkfsd.gov.hk/eng/source/safety/File2012.pdf

[16]

Wu M, Chow WK. 2012. Experimental justification on thermal empirical equations for post-flashover compartment fires. Journal of Fire Sciences 30(6):511−34

doi: 10.1177/0734904112449322
[17]

Chow WK, Chow CL, Li SS. 2011. Simulating smoke filling in big halls by computational fluid dynamics. Modelling and Simulation in Engineering 2011:781252

doi: 10.1155/2011/781252
[18]

Sun XQ, Hu LH, Chow WK, Xu Y, Li F. 2011. A theoretical model to predict plume rise in shaft generated by growing compartment fire. International Journal of Heat and Mass Transfer 54(4):910−20

doi: 10.1016/j.ijheatmasstransfer.2010.10.012
[19]

Gutiérrez-Montes C, Sanmiguel-Rojas E, Viedma A, Rein G. 2009. Experimental data and numerical modelling of 1.3 and 2.3MW fires in a 20m cubic atrium. Building and Environment 44(9):1827−39

doi: 10.1016/j.buildenv.2008.12.010
[20]

Ayala P, Cantizano A, Gutiérrez-Montes C, Rein G. 2013. Influence of atrium roof geometries on the numerical predictions of fire tests under natural ventilation conditions. Energy and Buildings 65:382−90

doi: 10.1016/j.enbuild.2013.06.010
[21]

Ayala P, Cantizano A, Rein G, Gutiérrez-Montes C. 2018. Factors affecting the make-up air and their influence on the dynamics of atrium fires. Fire Technology 54(4):1067−91

doi: 10.1007/s10694-018-0725-z
[22]

Ayala P, Cantizano A, Sánchez-Úbeda EF, Gutiérrez-Montes C. 2017. The use of fractional factorial design for atrium fires prediction. Fire Technology 53(2):893−916

doi: 10.1007/s10694-016-0609-z
[23]

Vigne G, Węgrzyński W, Cantizano A, Ayala P, Rein G, et al. 2021. Experimental and computational study of smoke dynamics from multiple fire sources inside a large-volume building. Building Simulation 14(4):1147−61

doi: 10.1007/s12273-020-0715-1
[24]

Ayala P, Cantizano A, Rein G, Vigne G, Gutiérrez-Montes C. 2016. Fire experiments and simulations in a full-scale atrium under transient and asymmetric venting conditions. Fire Technology 52(1):51−78

doi: 10.1007/s10694-015-0487-9
[25]

Luo M, Sun X, Li S. 2022. A historical review of fire engineering practice and advances in China. Fire Technology 00:1−45

doi: 10.1007/s10694-022-01300-8
[26]

Fleischmann C. 2011. Is prescription the future of performance based design? Fire Safety Science 10:77−94

doi: 10.3801/iafss.fss.10-77
[27]

Su LC, Wu X, Zhang X, Huang X. 2021. Smart performance-based design for building fire safety: Prediction of smoke motion via AI. Journal of Building Engineering 43:102529

doi: 10.1016/j.jobe.2021.102529
[28]

Zeng Y, Zhang X, Su LC, Wu X, Huang X. 2022. Artificial Intelligence tool for fire safety design (IFETool): Demonstration in large open spaces. Case Studies in Thermal Engineering 40:102483

doi: 10.1016/j.csite.2022.102483
[29]

Zeng Y, Li Y, Du P, Huang X. 2023. Smart fire detection analysis in complex building floorplans powered by GAN. Journal of Building Engineering 79:107858

doi: 10.1016/j.jobe.2023.107858
[30]

Heskestad G. 1989. Note on maximum rise of fire plumes in temperature-stratified ambients. Fire Safety Journal 15(4):271−76

doi: 10.1016/0379-7112(89)90033-7
[31]

Heskestad G. 1984. Engineering relations for fire plumes. Fire Safety Journal 7(1):25−32

doi: 10.1016/0379-7112(84)90005-5
[32]

Heskestad G. 1983. Virtual origins of fire plumes. Fire Safety Journal 5(2):109−14

doi: 10.1016/0379-7112(83)90003-6
[33]

Butcher K. 2016. Technical Memoranda TM19: 1995 Relationships for smoke control calculations. London: The Chartered Institution of Building Services Engineers.

[34]

Vigne G, Gutierrez-Montes C, Cantizano A, Węgrzyński W, Rein G. 2019. Review and validation of the current smoke plume entrainment models for large-volume buildings. Fire Technology 55(3):789−816

doi: 10.1007/s10694-018-0801-4
[35]

Zukoski EE, Kubota T, Cetegen B. 1981. Entrainment in fire plumes. Fire Safety Journal 3(2):107−21

doi: 10.1016/0379-7112(81)90037-0
[36]

McCaffrey BJ. 1979. Purely Buoyant Diffusion Flames: Some experimental results. Report. NBSIR 79-1910. Washington, DC: Center for Fire Research, Nationai Engineering Laboratory, NationaL Bureau of Standards. https://nvlpubs.nist.gov/nistpubs/Legacy/IR/nbsir79-1910.pdf

[37]

National Fire Protection Association (NFPA). 2021. NFPA 204: Standard for Smoke and Heat Venting. Quincy: NFPA. www.nfpa.org/codes-and-standards/2/0/4/nfpa-204

[38]

Beyler CL. 1986. Fire plumes and ceiling jets. Fire Safety Journal 11(1-2):53−75

doi: 10.1016/0379-7112(86)90052-4
[39]

Thomas PH, Webster CT, Raftery MM. 1961. Some experiments on buoyant diffusion flames. Combustion and Flame 5:359−67

doi: 10.1016/0010-2180(61)90117-1
[40]

Thomas PH. 1963. The size of flames from natural fires. Symposium (International) on Combustion 9(1):844−59

doi: 10.1016/S0082-0784(63)80091-0
[41]

Thomas PH, Baldwin R, Heselden AJM. 1965. Buoyant diffusion flames: Some measurements of air entrainment, heat transfer, and flame merging. Symposium (International) on Combustion 10(1):983−96

doi: 10.1016/S0082-0784(65)80241-7
[42]

Hinkley PL. 1986. Rates of 'production' of hot gases in roof venting experiments. Fire Safety Journal 10(1):57−65

doi: 10.1016/0379-7112(86)90032-9
[43]

Standards Australia/Standards New Zealand. 1996. Interim Australia / New Zealand Standard, Smoke management systems - Hot smoke test. AS/NZS 4391.

[44]

Luo M, Bressington P. 1999. Activation of Sprinkler Heads under Perforated Ceiling. INTERFLAM'99: Fire science and engineering conference. pp. 59–68. London, UK: Interscience Communications.

[45]

Alpert RL. 1975. Turbulent ceiling-jet induced by large-scale fires. Combustion Science and Technology 11(5-6):197−213

doi: 10.1080/00102207508946699
[46]

National Standard of the People's Republic of China. 2017. Technical standard for smoke management systems in buildings GB 51251-2017.

[47]

Alpert RL. 1972. Calculation of response time of ceiling-mounted fire detectors. Fire Technology 8(3):181−95

doi: 10.1007/BF02590543
[48]

Heseldon AJM. 1976. Studies of fire and smoke behaviour relevant to tunnel. The 2nd International Symposium on the Aerodynamics and Ventilation of Vehicles in Cambridge, BHRA Fluid Engineering, Cambridge, 1976. Cranfield: British Hydromechanics Research Association.

[49]

Delichatsios M. 1981. The flow of fire gases under a beamed ceiling. Combustion and Flame 43:1−10

doi: 10.1016/0010-2180(81)90002-X
[50]

Heselden AJM, Hinkley PL. 1970. Smoke Travel in Shopping Malls, Experiments in Co-operation with Glasgow Fire Brigade - Part 1. Fire Research Note Notes 832. Borehamwood. https://publications.iafss.org/publications/frn/832/-1/view/frn_832.pdf

[51]

Heselden AJM. 1970. Smoke Travel in Shopping Malls, Experiments in Co-operation with Glasgow Fire Brigade - Part 2. Fire Research Notes 854. Borehamwood. https://publications.iafss.org/publications/frn/854/-1