[1]

Studer MH, DeMartini JD, Davis MF, Sykes RW, Davison B, et al. 2011. Lignin content in natural Populus variants affects sugar release. Proceedings of the National Academy of Sciences of the United States of America 108:6300−5

doi: 10.1073/pnas.1009252108
[2]

Chen F, Dixon RA. 2007. Lignin modification improves fermentable sugar yields for biofuel production. Nature Biotechnology 25:759−61

doi: 10.1038/nbt1316
[3]

Baucher M, Halpin C, Petit-Conil M, Boerjan W. 2003. Lignin: genetic engineering and impact on pulping. Critical Reviews in Biochemistry and Molecular Biology 38:305−50

doi: 10.1080/10409230391036757
[4]

Dixon RA, Barros J. 2019. Lignin biosynthesis: old roads revisited and new roads explored. Open Biology 9:190215

doi: 10.1098/rsob.190215
[5]

Vanholme R, De Meester B, Ralph J, Boerjan W. 2019. Lignin biosynthesis and its integration into metabolism. Current Opinion in Biotechnology 56:230−39

doi: 10.1016/j.copbio.2019.02.018
[6]

del Río JC, Rencoret J, Gutiérrez A, Elder T, Kim H, et al. 2020. Lignin monomers from beyond the canonical monolignol biosynthetic pathway: Another brick in the wall. ACS Sustainable Chemistry & Engineering 8:4997−5012

doi: 10.1021/acssuschemeng.0c01109
[7]

del Río JC, Rencoret J, Gutiérrez A, Kim H, Ralph J. 2022. Chapter One - Unconventional lignin monomers—Extension of the lignin paradigm. Advances in Botanical Research 104:1−39

doi: 10.1016/bs.abr.2022.02.001
[8]

Perkins M, Smith RA, Samuels L. 2019. The transport of monomers during lignification in plants: anything goes but how? Current Opinion in Biotechnology 56:69−74

doi: 10.1016/j.copbio.2018.09.011
[9]

Boerjan W, Ralph J, Baucher M. 2003. Lignin biosynthesis. Annual Review of Plant Biology 54:519−46

doi: 10.1146/annurev.arplant.54.031902.134938
[10]

Vanholme R, Demedts B, Morreel K, Ralph J, Boerjan W. 2010. Lignin biosynthesis and structure. Plant Physiology 153:895−905

doi: 10.1104/pp.110.155119
[11]

Lewis NG, Yamamoto E. 1990. Lignin: occurrence, biogenesis and biodegradation. Annual Review of Plant Physiology and Plant Molecular Biology 41:455−96

doi: 10.1146/annurev.pp.41.060190.002323
[12]

Ma R, Zhang X, Wang Y, Zhang X. 2018. New insights toward quantitative relationships between lignin reactivity to monomers and their structural characteristics. ChemSusChem 11:2146−55

doi: 10.1002/cssc.201800550
[13]

Ralph J, Lapierre C, Boerjan W. 2019. Lignin structure and its engineering. Current Opinion in Biotechnology 56:240−49

doi: 10.1016/j.copbio.2019.02.019
[14]

Ralph J. 2010. Hydroxycinnamates in lignification. Phytochemistry Reviews 9:65−83

doi: 10.1007/s11101-009-9141-9
[15]

Karlen SD, Free HCA, Padmakshan D, Smith BG, Ralph J, et al. 2018. Commelinid monocotyledon lignins are acylated by p-coumarate. Plant Physiology 177:513−21

doi: 10.1104/pp.18.00298
[16]

Smith DCC. 1955. Ester groups in lignin. Nature 176:267−68

doi: 10.1038/176267a0
[17]

Yamamoto M, Tomiyama H, Koyama A, Okuizumi H, Liu S, et al. 2020. A century-old mystery unveiled: Sekizaisou is a natural lignin mutant. Plant Physiology 182:1821−28

doi: 10.1104/pp.19.01467
[18]

Mottiar Y, Smith RA, Karlen SD, Ralph J, Mansfield SD. 2023. Evolution of p-coumaroylated lignin in eudicots provides new tools for cell wall engineering. New Phytologist 237:251−64

doi: 10.1111/nph.18518
[19]

Smith DCC. 1955. p-Hydroxybenzoate groups in the lignin of Aspen (Populus tremula). Journal of the Chemical Society 3:2347−51

doi: 10.1039/JR9550002347
[20]

Landucci LL, Deka GC, Roy DN. 1992. A13C NMR study of milled wood lignins from hybrid Salix clones. Holzforschung 46:505−11

doi: 10.1515/hfsg.1992.46.6.505
[21]

Lu FC, Ralph J, Morreel K, Messens E, Boerjan W. 2004. Preparation and relevance of a cross-coupling product between sinapyl alcohol and sinapyl p-hydroxybenzoate. Organic & Biomolecular Chemistry 2:2888−90

doi: 10.1039/B411428K
[22]

Rencoret J, Kim H, Evaristo AB, Gutiérrez A, Ralph J, et al. 2018. Variability in lignin composition and structure in cell walls of different parts of macaúba (Acrocomia aculeata) palm fruit. Journal of Agricultural and Food Chemistry 66:138−53

doi: 10.1021/acs.jafc.7b04638
[23]

Kaal J, Serrano O, del Rio JC, Rencoret J. 2018. Radically different lignin composition in Posidonia species may link to differences in organic carbon sequestration capacity. Organic Geochemistry 124:247−56

doi: 10.1016/j.orggeochem.2018.07.017
[24]

Rencoret J, Marques G, Serrano O, Kaal J, Martínez AT, et al. 2020. Deciphering the unique structure and acylation pattern of Posidonia oceanica lignin. ACS Sustainable Chemistry & Engineering 8:12521−33

doi: 10.1021/acssuschemeng.0c03502
[25]

Ralph J. 1996. An unusual lignin from kenaf. Journal of Natural Products 59:341−42

doi: 10.1021/np960143s
[26]

Karlen SD, Zhang C, Peck ML, Smith RA, Padmakshan D, et al. 2016. Monolignol ferulate conjugates are naturally incorporated into plant lignins. Science Advances 2:e1600393

doi: 10.1126/sciadv.1600393
[27]

Kim H, Li Q, Karlen SD, Smith RA, Shi R, et al. 2020. Monolignol benzoates incorporate into the lignin of transgenic Populus trichocarpa depleted in C3H and C4H. ACS Sustainable Chemistry & Engineering 8:3644−54

doi: 10.1021/acssuschemeng.9b06389
[28]

Karlen SD, Smith RA, Kim H, Padmakshan D, Bartuce A, et al. 2017. Highly decorated lignins in leaf tissues of the Canary Island date palm Phoenix canariensis. Plant Physiology 175:1058−67

doi: 10.1104/pp.17.01172
[29]

del Río JC, Rencoret J, Marques G, Gutiérrez A, Ibarra D, et al. 2008. Highly acylated (acetylated and/or p-coumaroylated) native lignins from diverse herbaceous plants. Journal of Agricultural and Food Chemistry 56:9525−34

doi: 10.1021/jf800806h
[30]

del Río JC, Rencoret J, Prinsen P, Martínez ÁT, Ralph J, et al. 2012. Structural characterization of wheat straw lignin as revealed by analytical pyrolysis, 2D-NMR, and reductive cleavage methods. Journal of Agricultural and Food Chemistry 60:5922−35

doi: 10.1021/jf301002n
[31]

Hatfield RD, Marita JM, Frost K, Grabber J, Ralph J, et al. 2009. Grass lignin acylation: p-coumaroyl transferase activity and cell wall characteristics of C3 and C4 grasses. Planta 229:1253−67

doi: 10.1007/s00425-009-0900-z
[32]

Li M, Pu Y, Ragauskas AJ. 2016. Current understanding of the correlation of lignin structure with biomass recalcitrance. Frontiers in Chemistry 4:45

doi: 10.3389/fchem.2016.00045
[33]

Wilkerson CG, Mansfield SD, Lu F, Withers S, Park JY, et al. 2014. Monolignol ferulate transferase introduces chemically labile linkages into the lignin backbone. Science 344:90−93

doi: 10.1126/science.1250161
[34]

Withers S, Lu F, Kim H, Zhu Y, Ralph J, et al. 2012. Identification of grass-specific enzyme that acylates monolignols with p-coumarate. Journal of Biological Chemistry 287:8347−55

doi: 10.1074/jbc.M111.284497
[35]

Petrik DL, Karlen SD, Cass CL, Padmakshan D, Lu F, et al. 2014. p-coumaroyl-CoA: monolignol transferase (PMT) acts specifically in the lignin biosynthetic pathway in Brachypodium distachyon. The Plant Journal 77:713−26

doi: 10.1111/tpj.12420
[36]

Marita JM, Hatfield RD, Rancour DM, Frost KE. 2014. Identification and suppression of the p-coumaroyl CoA:hydroxycinnamyl alcohol transferase in Zea mays L. The Plant Journal 78:850−64

doi: 10.1111/tpj.12510
[37]

Zhao Y, Yu X, Lam PY, Zhang K, Tobimatsu Y, et al. 2021. Monolignol acyltransferase for lignin p-hydroxybenzoylation in Populus. Nature Plants 7:1288−300

doi: 10.1038/s41477-021-00975-1
[38]

de Vries L, MacKay HA, Smith RA, Mottiar Y, Karlen SD, et al. 2022. pHBMT1, a BAHD-family monolignol acyltransferase, mediates lignin acylation in poplar. Plant Physiology 188:1014−27

doi: 10.1093/plphys/kiab546
[39]

Kim KH, Dutta T, Ralph J, Mansfield SD, Simmons BA, et al. 2017. Impact of lignin polymer backbone esters on ionic liquid pretreatment of poplar. Biotechnology for Biofuels 10:101

doi: 10.1186/s13068-017-0784-2
[40]

Smith RA, Gonzales-Vigil E, Karlen SD, Park JY, Lu F, et al. 2015. Engineering monolignol p-coumarate conjugates into poplar and Arabidopsis lignins. Plant Physiology 169:2992−3001

doi: 10.1104/pp.15.00815
[41]

Sibout R, Le Bris P, Legée F, Cézard L, Renault H, et al. 2016. Structural redesigning Arabidopsis lignins into alkali-soluble lignins through the expression of p-coumaroyl-CoA:Monolignol Transferase PMT. Plant Physiology 170:1358−66

doi: 10.1104/pp.15.01877
[42]

Chen F, Tobimatsu Y, Havkin-Frenkel D, Dixon RA, Ralph J. 2012. A polymer of caffeyl alcohol in plant seeds. Proceedings of the National Academy of Sciences of the United States of America 109:1772−77

doi: 10.1073/pnas.1120992109
[43]

Chen F, Tobimatsu Y, Jackson L, Nakashima J, Ralph J, et al. 2013. Novel seed coat lignins in the Cactaceae: structure, distribution and implications for the evolution of lignin diversity. The Plant Journal 73:201−11

doi: 10.1111/tpj.12012
[44]

Mottiar Y, Vanholme R, Boerjan W, Ralph J, Mansfield SD. 2016. Designer lignins: harnessing the plasticity of lignification. Current Opinion in Biotechnology 37:190−200

doi: 10.1016/j.copbio.2015.10.009
[45]

Li Y, Li S, Kim H, Motagamwala AH, Mobley JK, et al. 2018. An "ideal lignin" facilitates full biomass utilization. Science Advances 4:eaau2968

doi: 10.1126/sciadv.aau2968
[46]

Li Y, Meng X, Meng R, Cai T, Pu Y, et al. 2023. Valorization of homogeneous linear catechyl lignin: opportunities and challenges. RSC Advances 13:12750−59

doi: 10.1039/D3RA01546G
[47]

Wang S, Zhang K, Li H, Xiao L, Song G. 2021. Selective hydrogenolysis of catechyl lignin into propenylcatechol over an atomically dispersed ruthenium catalyst. Nature Communications 12:416

doi: 10.1038/s41467-020-20684-1
[48]

Nar M, Rizvi HR, Dixon RA, Chen F, Kovalcik A, et al. 2016. Superior plant based carbon fibers from electrospun poly-(caffeyl alcohol) lignin. Carbon 103:372−83

doi: 10.1016/j.carbon.2016.02.053
[49]

Tobimatsu Y, Chen F, Nakashima J, Escamilla-Treviño LL, Jackson L, et al. 2013. Coexistence but independent biosynthesis of catechyl and guaiacyl/syringyl lignin polymers in seed coats. The Plant Cell 25:2587−600

doi: 10.1105/tpc.113.113142
[50]

Zhuo C, Rao X, Azad R, Pandey R, Xiao X, et al. 2019. Enzymatic basis for C-lignin monomer biosynthesis in the seed coat of Cleome hassleriana. The Plant Journal 99:506−20

doi: 10.1111/tpj.14340
[51]

Ha C, Escamilla-Trevino L, Zhuo C, Pu Y, Bryant N, et al. 2023. Systematic approaches to C-lignin engineering in Medicago truncatula. Biotechnology for Biofuels and Bioproducts 16:100

doi: 10.1186/s13068-023-02339-7
[52]

Zhuo C, Wang X, Docampo-Palacios M, Sanders BC, Engle NL, et al. 2022. Developmental changes in lignin composition are driven by both monolignol supply and laccase specificity. Science Advances 8:abm8145

doi: 10.1126/sciadv.abm8145
[53]

Wagner A, Tobimatsu Y, Phillips L, Flint H, Torr K, et al. 2011. CCoAOMT suppression modifies lignin composition in Pinus radiata. The Plant Journal 67:119−29

doi: 10.1111/j.1365-313X.2011.04580.x
[54]

Meyermans H, Morreel K, Lapierre C, Pollet B, De Bruyn A, et al. 2000. Modifications in lignin and accumulation of phenolic glucosides in poplar xylem upon down-regulation of caffeoyl-coenzyme A O-methyltransferase, an enzyme involved in lignin biosynthesis. Journal of Biological Chemistry 275:36899−909

doi: 10.1074/jbc.M006915200
[55]

Marita JM, Ralph J, Hatfield RD, Guo D, Chen F, et al. 2003. Structural and compositional modifications in lignin of transgenic alfalfa down-regulated in caffeic acid 3-O-methyltransferase and caffeoyl coenzyme A 3-O-methyltransferase. Phytochemistry 62:53−65

doi: 10.1016/S0031-9422(02)00434-X
[56]

Do CT, Pollet B, Thévenin J, Sibout R, Denoue D, et al. 2007. Both caffeoyl Coenzyme A 3-O-methyltransferase 1 and caffeic acid O-methyltransferase 1 are involved in redundant functions for lignin, flavonoids and sinapoyl malate biosynthesis in Arabidopsis. Planta 226:1117−29

doi: 10.1007/s00425-007-0558-3
[57]

Weng J, Mo H, Chapple C. 2010. Over-expression of F5H in COMT-deficient Arabidopsis leads to enrichment of an unusual lignin and disruption of pollen wall formation. The Plant Journal 64:898−911

doi: 10.1111/j.1365-313X.2010.04391.x
[58]

Wang X, Zhuo C, Xiao X, Wang X, Docampo-Palacios M, et al. 2020. Substrate specificity of LACCASE8 facilitates polymerization of caffeyl alcohol for C-lignin biosynthesis in the seed coat of Cleome hassleriana. The Plant Cell 32:3825−45

doi: 10.1105/tpc.20.00598
[59]

Crestini C, Melone F, Sette M, Saladino R. 2011. Milled wood lignin: a linear oligomer. Biomacromolecules 12:3928−35

doi: 10.1021/bm200948r
[60]

Pouteau C, Dole P, Cathala B, Averous L, Boquillon N. 2003. Antioxidant properties of lignin in polypropylene. Polymer Degradation and Stability 81:9−18

doi: 10.1016/S0141-3910(03)00057-0
[61]

Pan X, Kadla JF, Ehara K, Gilkes N, Saddler JN. 2006. Organosolv ethanol lignin from hybrid poplar as a radical scavenger: relationship between lignin structure, extraction conditions, and antioxidant activity. Journal of Agricultural and Food Chemistry 54:5806−13

doi: 10.1021/jf0605392
[62]

Eudes A, George A, Mukerjee P, Kim JS, Pollet B, et al. 2012. Biosynthesis and incorporation of side-chain-truncated lignin monomers to reduce lignin polymerization and enhance saccharification. Plant Biotechnology Journal 10:609−20

doi: 10.1111/j.1467-7652.2012.00692.x
[63]

Ralph J, MacKay JJ, Hatfield RD, O'Malley DM, Whetten RW, et al. 1997. Abnormal lignin in a loblolly pine mutant. Science 277:235−39

doi: 10.1126/science.277.5323.235
[64]

Ralph J, Lapierre C, Marita JM, Kim H, Lu F, et al. 2001. Elucidation of new structures in lignins of CAD- and COMT-deficient plants by NMR. Phytochemistry 57:993−1003

doi: 10.1016/S0031-9422(01)00109-1
[65]

Lan W, Lu F, Regner M, Zhu Y, Rencoret J, et al. 2015. Tricin, a flavonoid monomer in monocot lignification. Plant Physiology 167:1284−65

doi: 10.1104/pp.114.253757
[66]

Yang Q, Pan X. 2016. Correlation between lignin physicochemical properties and inhibition to enzymatic hydrolysis of cellulose. Biotechnology and bioengineering 113:1213−24

doi: 10.1002/bit.25903
[67]

Neiva DM, Rencoret J, Marques G, Gutierrez A, Gominho J, et al. 2020. Lignin from tree barks: chemical structure and valorization. ChemSusChem 13:4537−47

doi: 10.1002/cssc.202000431
[68]

Rencoret J, Neiva D, Marques G, Gutiérrez A, Kim H, et al. 2019. Hydroxystilbene glucosides are incorporated into Norway spruce bark lignin. Plant Physiology 180:1310−21

doi: 10.1104/pp.19.00344
[69]

Grabber JH, Schatz PF, Kim H, Lu F, Ralph J. 2010. Identifying new lignin bioengineering targets: 1. Monolignol-substitute impacts on lignin formation and cell wall fermentability. BMC Plant Biology 10:114

doi: 10.1186/1471-2229-10-114
[70]

Grabber JH, Ress D, Ralph J. 2012. Identifying new lignin bioengineering targets: impact of epicatechin, quercetin glycoside, and gallate derivatives on the lignification and fermentation of maize cell walls. Journal of Agricultural and Food Chemistry 60:5152−60

doi: 10.1021/jf203986a
[71]

Grabber JH, Davidson C, Tobimatsu Y, Kim H, Lu F, et al. 2019. Structural features of alternative lignin monomers associated with improved digestibility of artificially lignified maize cell walls. Plant Science 287:110070

doi: 10.1016/j.plantsci.2019.02.004
[72]

Oyarce P, De Meester B, Fonseca F, de Vries L, Goeminne G, et al. 2019. Introducing curcumin biosynthesis in Arabidopsis enhances lignocellulosic biomass processing. Nature Plants 5:225−37

doi: 10.1038/s41477-018-0350-3
[73]

Hoengenaert L, Wouters M, Kim H, De Meester B, Morreel K, et al. 2022. Overexpression of the scopoletin biosynthetic pathway enhances lignocellulosic biomass processing. Science Advances 8:eabo5738

doi: 10.1126/sciadv.abo5738
[74]

De Meester B, Oyarce P, Vanholme R, Van Acker R, Tsuji Y, et al. 2022. Engineering curcumin biosynthesis in poplar affects lignification and biomass yield. Frontiers in Plant Science 13:943349

doi: 10.3389/fpls.2022.943349