[1]
|
Studer MH, DeMartini JD, Davis MF, Sykes RW, Davison B, et al. 2011. Lignin content in natural Populus variants affects sugar release. Proceedings of the National Academy of Sciences of the United States of America 108:6300−5 doi: 10.1073/pnas.1009252108
CrossRef Google Scholar
|
[2]
|
Chen F, Dixon RA. 2007. Lignin modification improves fermentable sugar yields for biofuel production. Nature Biotechnology 25:759−61 doi: 10.1038/nbt1316
CrossRef Google Scholar
|
[3]
|
Baucher M, Halpin C, Petit-Conil M, Boerjan W. 2003. Lignin: genetic engineering and impact on pulping. Critical Reviews in Biochemistry and Molecular Biology 38:305−50 doi: 10.1080/10409230391036757
CrossRef Google Scholar
|
[4]
|
Dixon RA, Barros J. 2019. Lignin biosynthesis: old roads revisited and new roads explored. Open Biology 9:190215 doi: 10.1098/rsob.190215
CrossRef Google Scholar
|
[5]
|
Vanholme R, De Meester B, Ralph J, Boerjan W. 2019. Lignin biosynthesis and its integration into metabolism. Current Opinion in Biotechnology 56:230−39 doi: 10.1016/j.copbio.2019.02.018
CrossRef Google Scholar
|
[6]
|
del Río JC, Rencoret J, Gutiérrez A, Elder T, Kim H, et al. 2020. Lignin monomers from beyond the canonical monolignol biosynthetic pathway: Another brick in the wall. ACS Sustainable Chemistry & Engineering 8:4997−5012 doi: 10.1021/acssuschemeng.0c01109
CrossRef Google Scholar
|
[7]
|
del Río JC, Rencoret J, Gutiérrez A, Kim H, Ralph J. 2022. Chapter One - Unconventional lignin monomers—Extension of the lignin paradigm. Advances in Botanical Research 104:1−39 doi: 10.1016/bs.abr.2022.02.001
CrossRef Google Scholar
|
[8]
|
Perkins M, Smith RA, Samuels L. 2019. The transport of monomers during lignification in plants: anything goes but how? Current Opinion in Biotechnology 56:69−74 doi: 10.1016/j.copbio.2018.09.011
CrossRef Google Scholar
|
[9]
|
Boerjan W, Ralph J, Baucher M. 2003. Lignin biosynthesis. Annual Review of Plant Biology 54:519−46 doi: 10.1146/annurev.arplant.54.031902.134938
CrossRef Google Scholar
|
[10]
|
Vanholme R, Demedts B, Morreel K, Ralph J, Boerjan W. 2010. Lignin biosynthesis and structure. Plant Physiology 153:895−905 doi: 10.1104/pp.110.155119
CrossRef Google Scholar
|
[11]
|
Lewis NG, Yamamoto E. 1990. Lignin: occurrence, biogenesis and biodegradation. Annual Review of Plant Physiology and Plant Molecular Biology 41:455−96 doi: 10.1146/annurev.pp.41.060190.002323
CrossRef Google Scholar
|
[12]
|
Ma R, Zhang X, Wang Y, Zhang X. 2018. New insights toward quantitative relationships between lignin reactivity to monomers and their structural characteristics. ChemSusChem 11:2146−55 doi: 10.1002/cssc.201800550
CrossRef Google Scholar
|
[13]
|
Ralph J, Lapierre C, Boerjan W. 2019. Lignin structure and its engineering. Current Opinion in Biotechnology 56:240−49 doi: 10.1016/j.copbio.2019.02.019
CrossRef Google Scholar
|
[14]
|
Ralph J. 2010. Hydroxycinnamates in lignification. Phytochemistry Reviews 9:65−83 doi: 10.1007/s11101-009-9141-9
CrossRef Google Scholar
|
[15]
|
Karlen SD, Free HCA, Padmakshan D, Smith BG, Ralph J, et al. 2018. Commelinid monocotyledon lignins are acylated by p-coumarate. Plant Physiology 177:513−21 doi: 10.1104/pp.18.00298
CrossRef Google Scholar
|
[16]
|
Smith DCC. 1955. Ester groups in lignin. Nature 176:267−68 doi: 10.1038/176267a0
CrossRef Google Scholar
|
[17]
|
Yamamoto M, Tomiyama H, Koyama A, Okuizumi H, Liu S, et al. 2020. A century-old mystery unveiled: Sekizaisou is a natural lignin mutant. Plant Physiology 182:1821−28 doi: 10.1104/pp.19.01467
CrossRef Google Scholar
|
[18]
|
Mottiar Y, Smith RA, Karlen SD, Ralph J, Mansfield SD. 2023. Evolution of p-coumaroylated lignin in eudicots provides new tools for cell wall engineering. New Phytologist 237:251−64 doi: 10.1111/nph.18518
CrossRef Google Scholar
|
[19]
|
Smith DCC. 1955. p-Hydroxybenzoate groups in the lignin of Aspen (Populus tremula). Journal of the Chemical Society 3:2347−51 doi: 10.1039/JR9550002347
CrossRef Google Scholar
|
[20]
|
Landucci LL, Deka GC, Roy DN. 1992. A13C NMR study of milled wood lignins from hybrid Salix clones. Holzforschung 46:505−11 doi: 10.1515/hfsg.1992.46.6.505
CrossRef Google Scholar
|
[21]
|
Lu FC, Ralph J, Morreel K, Messens E, Boerjan W. 2004. Preparation and relevance of a cross-coupling product between sinapyl alcohol and sinapyl p-hydroxybenzoate. Organic & Biomolecular Chemistry 2:2888−90 doi: 10.1039/B411428K
CrossRef Google Scholar
|
[22]
|
Rencoret J, Kim H, Evaristo AB, Gutiérrez A, Ralph J, et al. 2018. Variability in lignin composition and structure in cell walls of different parts of macaúba (Acrocomia aculeata) palm fruit. Journal of Agricultural and Food Chemistry 66:138−53 doi: 10.1021/acs.jafc.7b04638
CrossRef Google Scholar
|
[23]
|
Kaal J, Serrano O, del Rio JC, Rencoret J. 2018. Radically different lignin composition in Posidonia species may link to differences in organic carbon sequestration capacity. Organic Geochemistry 124:247−56 doi: 10.1016/j.orggeochem.2018.07.017
CrossRef Google Scholar
|
[24]
|
Rencoret J, Marques G, Serrano O, Kaal J, Martínez AT, et al. 2020. Deciphering the unique structure and acylation pattern of Posidonia oceanica lignin. ACS Sustainable Chemistry & Engineering 8:12521−33 doi: 10.1021/acssuschemeng.0c03502
CrossRef Google Scholar
|
[25]
|
Ralph J. 1996. An unusual lignin from kenaf. Journal of Natural Products 59:341−42 doi: 10.1021/np960143s
CrossRef Google Scholar
|
[26]
|
Karlen SD, Zhang C, Peck ML, Smith RA, Padmakshan D, et al. 2016. Monolignol ferulate conjugates are naturally incorporated into plant lignins. Science Advances 2:e1600393 doi: 10.1126/sciadv.1600393
CrossRef Google Scholar
|
[27]
|
Kim H, Li Q, Karlen SD, Smith RA, Shi R, et al. 2020. Monolignol benzoates incorporate into the lignin of transgenic Populus trichocarpa depleted in C3H and C4H. ACS Sustainable Chemistry & Engineering 8:3644−54 doi: 10.1021/acssuschemeng.9b06389
CrossRef Google Scholar
|
[28]
|
Karlen SD, Smith RA, Kim H, Padmakshan D, Bartuce A, et al. 2017. Highly decorated lignins in leaf tissues of the Canary Island date palm Phoenix canariensis. Plant Physiology 175:1058−67 doi: 10.1104/pp.17.01172
CrossRef Google Scholar
|
[29]
|
del Río JC, Rencoret J, Marques G, Gutiérrez A, Ibarra D, et al. 2008. Highly acylated (acetylated and/or p-coumaroylated) native lignins from diverse herbaceous plants. Journal of Agricultural and Food Chemistry 56:9525−34 doi: 10.1021/jf800806h
CrossRef Google Scholar
|
[30]
|
del Río JC, Rencoret J, Prinsen P, Martínez ÁT, Ralph J, et al. 2012. Structural characterization of wheat straw lignin as revealed by analytical pyrolysis, 2D-NMR, and reductive cleavage methods. Journal of Agricultural and Food Chemistry 60:5922−35 doi: 10.1021/jf301002n
CrossRef Google Scholar
|
[31]
|
Hatfield RD, Marita JM, Frost K, Grabber J, Ralph J, et al. 2009. Grass lignin acylation: p-coumaroyl transferase activity and cell wall characteristics of C3 and C4 grasses. Planta 229:1253−67 doi: 10.1007/s00425-009-0900-z
CrossRef Google Scholar
|
[32]
|
Li M, Pu Y, Ragauskas AJ. 2016. Current understanding of the correlation of lignin structure with biomass recalcitrance. Frontiers in Chemistry 4:45 doi: 10.3389/fchem.2016.00045
CrossRef Google Scholar
|
[33]
|
Wilkerson CG, Mansfield SD, Lu F, Withers S, Park JY, et al. 2014. Monolignol ferulate transferase introduces chemically labile linkages into the lignin backbone. Science 344:90−93 doi: 10.1126/science.1250161
CrossRef Google Scholar
|
[34]
|
Withers S, Lu F, Kim H, Zhu Y, Ralph J, et al. 2012. Identification of grass-specific enzyme that acylates monolignols with p-coumarate. Journal of Biological Chemistry 287:8347−55 doi: 10.1074/jbc.M111.284497
CrossRef Google Scholar
|
[35]
|
Petrik DL, Karlen SD, Cass CL, Padmakshan D, Lu F, et al. 2014. p-coumaroyl-CoA: monolignol transferase (PMT) acts specifically in the lignin biosynthetic pathway in Brachypodium distachyon. The Plant Journal 77:713−26 doi: 10.1111/tpj.12420
CrossRef Google Scholar
|
[36]
|
Marita JM, Hatfield RD, Rancour DM, Frost KE. 2014. Identification and suppression of the p-coumaroyl CoA:hydroxycinnamyl alcohol transferase in Zea mays L. The Plant Journal 78:850−64 doi: 10.1111/tpj.12510
CrossRef Google Scholar
|
[37]
|
Zhao Y, Yu X, Lam PY, Zhang K, Tobimatsu Y, et al. 2021. Monolignol acyltransferase for lignin p-hydroxybenzoylation in Populus. Nature Plants 7:1288−300 doi: 10.1038/s41477-021-00975-1
CrossRef Google Scholar
|
[38]
|
de Vries L, MacKay HA, Smith RA, Mottiar Y, Karlen SD, et al. 2022. pHBMT1, a BAHD-family monolignol acyltransferase, mediates lignin acylation in poplar. Plant Physiology 188:1014−27 doi: 10.1093/plphys/kiab546
CrossRef Google Scholar
|
[39]
|
Kim KH, Dutta T, Ralph J, Mansfield SD, Simmons BA, et al. 2017. Impact of lignin polymer backbone esters on ionic liquid pretreatment of poplar. Biotechnology for Biofuels 10:101 doi: 10.1186/s13068-017-0784-2
CrossRef Google Scholar
|
[40]
|
Smith RA, Gonzales-Vigil E, Karlen SD, Park JY, Lu F, et al. 2015. Engineering monolignol p-coumarate conjugates into poplar and Arabidopsis lignins. Plant Physiology 169:2992−3001 doi: 10.1104/pp.15.00815
CrossRef Google Scholar
|
[41]
|
Sibout R, Le Bris P, Legée F, Cézard L, Renault H, et al. 2016. Structural redesigning Arabidopsis lignins into alkali-soluble lignins through the expression of p-coumaroyl-CoA:Monolignol Transferase PMT. Plant Physiology 170:1358−66 doi: 10.1104/pp.15.01877
CrossRef Google Scholar
|
[42]
|
Chen F, Tobimatsu Y, Havkin-Frenkel D, Dixon RA, Ralph J. 2012. A polymer of caffeyl alcohol in plant seeds. Proceedings of the National Academy of Sciences of the United States of America 109:1772−77 doi: 10.1073/pnas.1120992109
CrossRef Google Scholar
|
[43]
|
Chen F, Tobimatsu Y, Jackson L, Nakashima J, Ralph J, et al. 2013. Novel seed coat lignins in the Cactaceae: structure, distribution and implications for the evolution of lignin diversity. The Plant Journal 73:201−11 doi: 10.1111/tpj.12012
CrossRef Google Scholar
|
[44]
|
Mottiar Y, Vanholme R, Boerjan W, Ralph J, Mansfield SD. 2016. Designer lignins: harnessing the plasticity of lignification. Current Opinion in Biotechnology 37:190−200 doi: 10.1016/j.copbio.2015.10.009
CrossRef Google Scholar
|
[45]
|
Li Y, Li S, Kim H, Motagamwala AH, Mobley JK, et al. 2018. An "ideal lignin" facilitates full biomass utilization. Science Advances 4:eaau2968 doi: 10.1126/sciadv.aau2968
CrossRef Google Scholar
|
[46]
|
Li Y, Meng X, Meng R, Cai T, Pu Y, et al. 2023. Valorization of homogeneous linear catechyl lignin: opportunities and challenges. RSC Advances 13:12750−59 doi: 10.1039/D3RA01546G
CrossRef Google Scholar
|
[47]
|
Wang S, Zhang K, Li H, Xiao L, Song G. 2021. Selective hydrogenolysis of catechyl lignin into propenylcatechol over an atomically dispersed ruthenium catalyst. Nature Communications 12:416 doi: 10.1038/s41467-020-20684-1
CrossRef Google Scholar
|
[48]
|
Nar M, Rizvi HR, Dixon RA, Chen F, Kovalcik A, et al. 2016. Superior plant based carbon fibers from electrospun poly-(caffeyl alcohol) lignin. Carbon 103:372−83 doi: 10.1016/j.carbon.2016.02.053
CrossRef Google Scholar
|
[49]
|
Tobimatsu Y, Chen F, Nakashima J, Escamilla-Treviño LL, Jackson L, et al. 2013. Coexistence but independent biosynthesis of catechyl and guaiacyl/syringyl lignin polymers in seed coats. The Plant Cell 25:2587−600 doi: 10.1105/tpc.113.113142
CrossRef Google Scholar
|
[50]
|
Zhuo C, Rao X, Azad R, Pandey R, Xiao X, et al. 2019. Enzymatic basis for C-lignin monomer biosynthesis in the seed coat of Cleome hassleriana. The Plant Journal 99:506−20 doi: 10.1111/tpj.14340
CrossRef Google Scholar
|
[51]
|
Ha C, Escamilla-Trevino L, Zhuo C, Pu Y, Bryant N, et al. 2023. Systematic approaches to C-lignin engineering in Medicago truncatula. Biotechnology for Biofuels and Bioproducts 16:100 doi: 10.1186/s13068-023-02339-7
CrossRef Google Scholar
|
[52]
|
Zhuo C, Wang X, Docampo-Palacios M, Sanders BC, Engle NL, et al. 2022. Developmental changes in lignin composition are driven by both monolignol supply and laccase specificity. Science Advances 8:abm8145 doi: 10.1126/sciadv.abm8145
CrossRef Google Scholar
|
[53]
|
Wagner A, Tobimatsu Y, Phillips L, Flint H, Torr K, et al. 2011. CCoAOMT suppression modifies lignin composition in Pinus radiata. The Plant Journal 67:119−29 doi: 10.1111/j.1365-313X.2011.04580.x
CrossRef Google Scholar
|
[54]
|
Meyermans H, Morreel K, Lapierre C, Pollet B, De Bruyn A, et al. 2000. Modifications in lignin and accumulation of phenolic glucosides in poplar xylem upon down-regulation of caffeoyl-coenzyme A O-methyltransferase, an enzyme involved in lignin biosynthesis. Journal of Biological Chemistry 275:36899−909 doi: 10.1074/jbc.M006915200
CrossRef Google Scholar
|
[55]
|
Marita JM, Ralph J, Hatfield RD, Guo D, Chen F, et al. 2003. Structural and compositional modifications in lignin of transgenic alfalfa down-regulated in caffeic acid 3-O-methyltransferase and caffeoyl coenzyme A 3-O-methyltransferase. Phytochemistry 62:53−65 doi: 10.1016/S0031-9422(02)00434-X
CrossRef Google Scholar
|
[56]
|
Do CT, Pollet B, Thévenin J, Sibout R, Denoue D, et al. 2007. Both caffeoyl Coenzyme A 3-O-methyltransferase 1 and caffeic acid O-methyltransferase 1 are involved in redundant functions for lignin, flavonoids and sinapoyl malate biosynthesis in Arabidopsis. Planta 226:1117−29 doi: 10.1007/s00425-007-0558-3
CrossRef Google Scholar
|
[57]
|
Weng J, Mo H, Chapple C. 2010. Over-expression of F5H in COMT-deficient Arabidopsis leads to enrichment of an unusual lignin and disruption of pollen wall formation. The Plant Journal 64:898−911 doi: 10.1111/j.1365-313X.2010.04391.x
CrossRef Google Scholar
|
[58]
|
Wang X, Zhuo C, Xiao X, Wang X, Docampo-Palacios M, et al. 2020. Substrate specificity of LACCASE8 facilitates polymerization of caffeyl alcohol for C-lignin biosynthesis in the seed coat of Cleome hassleriana. The Plant Cell 32:3825−45 doi: 10.1105/tpc.20.00598
CrossRef Google Scholar
|
[59]
|
Crestini C, Melone F, Sette M, Saladino R. 2011. Milled wood lignin: a linear oligomer. Biomacromolecules 12:3928−35 doi: 10.1021/bm200948r
CrossRef Google Scholar
|
[60]
|
Pouteau C, Dole P, Cathala B, Averous L, Boquillon N. 2003. Antioxidant properties of lignin in polypropylene. Polymer Degradation and Stability 81:9−18 doi: 10.1016/S0141-3910(03)00057-0
CrossRef Google Scholar
|
[61]
|
Pan X, Kadla JF, Ehara K, Gilkes N, Saddler JN. 2006. Organosolv ethanol lignin from hybrid poplar as a radical scavenger: relationship between lignin structure, extraction conditions, and antioxidant activity. Journal of Agricultural and Food Chemistry 54:5806−13 doi: 10.1021/jf0605392
CrossRef Google Scholar
|
[62]
|
Eudes A, George A, Mukerjee P, Kim JS, Pollet B, et al. 2012. Biosynthesis and incorporation of side-chain-truncated lignin monomers to reduce lignin polymerization and enhance saccharification. Plant Biotechnology Journal 10:609−20 doi: 10.1111/j.1467-7652.2012.00692.x
CrossRef Google Scholar
|
[63]
|
Ralph J, MacKay JJ, Hatfield RD, O'Malley DM, Whetten RW, et al. 1997. Abnormal lignin in a loblolly pine mutant. Science 277:235−39 doi: 10.1126/science.277.5323.235
CrossRef Google Scholar
|
[64]
|
Ralph J, Lapierre C, Marita JM, Kim H, Lu F, et al. 2001. Elucidation of new structures in lignins of CAD- and COMT-deficient plants by NMR. Phytochemistry 57:993−1003 doi: 10.1016/S0031-9422(01)00109-1
CrossRef Google Scholar
|
[65]
|
Lan W, Lu F, Regner M, Zhu Y, Rencoret J, et al. 2015. Tricin, a flavonoid monomer in monocot lignification. Plant Physiology 167:1284−65 doi: 10.1104/pp.114.253757
CrossRef Google Scholar
|
[66]
|
Yang Q, Pan X. 2016. Correlation between lignin physicochemical properties and inhibition to enzymatic hydrolysis of cellulose. Biotechnology and bioengineering 113:1213−24 doi: 10.1002/bit.25903
CrossRef Google Scholar
|
[67]
|
Neiva DM, Rencoret J, Marques G, Gutierrez A, Gominho J, et al. 2020. Lignin from tree barks: chemical structure and valorization. ChemSusChem 13:4537−47 doi: 10.1002/cssc.202000431
CrossRef Google Scholar
|
[68]
|
Rencoret J, Neiva D, Marques G, Gutiérrez A, Kim H, et al. 2019. Hydroxystilbene glucosides are incorporated into Norway spruce bark lignin. Plant Physiology 180:1310−21 doi: 10.1104/pp.19.00344
CrossRef Google Scholar
|
[69]
|
Grabber JH, Schatz PF, Kim H, Lu F, Ralph J. 2010. Identifying new lignin bioengineering targets: 1. Monolignol-substitute impacts on lignin formation and cell wall fermentability. BMC Plant Biology 10:114 doi: 10.1186/1471-2229-10-114
CrossRef Google Scholar
|
[70]
|
Grabber JH, Ress D, Ralph J. 2012. Identifying new lignin bioengineering targets: impact of epicatechin, quercetin glycoside, and gallate derivatives on the lignification and fermentation of maize cell walls. Journal of Agricultural and Food Chemistry 60:5152−60 doi: 10.1021/jf203986a
CrossRef Google Scholar
|
[71]
|
Grabber JH, Davidson C, Tobimatsu Y, Kim H, Lu F, et al. 2019. Structural features of alternative lignin monomers associated with improved digestibility of artificially lignified maize cell walls. Plant Science 287:110070 doi: 10.1016/j.plantsci.2019.02.004
CrossRef Google Scholar
|
[72]
|
Oyarce P, De Meester B, Fonseca F, de Vries L, Goeminne G, et al. 2019. Introducing curcumin biosynthesis in Arabidopsis enhances lignocellulosic biomass processing. Nature Plants 5:225−37 doi: 10.1038/s41477-018-0350-3
CrossRef Google Scholar
|
[73]
|
Hoengenaert L, Wouters M, Kim H, De Meester B, Morreel K, et al. 2022. Overexpression of the scopoletin biosynthetic pathway enhances lignocellulosic biomass processing. Science Advances 8:eabo5738 doi: 10.1126/sciadv.abo5738
CrossRef Google Scholar
|
[74]
|
De Meester B, Oyarce P, Vanholme R, Van Acker R, Tsuji Y, et al. 2022. Engineering curcumin biosynthesis in poplar affects lignification and biomass yield. Frontiers in Plant Science 13:943349 doi: 10.3389/fpls.2022.943349
CrossRef Google Scholar
|