[1]

Kagale S, Robinson SJ, Nixon J, Xiao R, Huebert T, et al. 2014. Polyploid evolution of the Brassicaceae during the Cenozoic era. The Plant Cell 26:2777−91

doi: 10.1105/tpc.114.126391
[2]

Qi X, An H, Hall TE, Di C, Blischak PD, et al. 2021. Genes derived from ancient polyploidy have higher genetic diversity and are associated with domestication in Brassica rapa. New Phytologist 230:372−86

doi: 10.1111/nph.17194
[3]

Barker MS, Arrigo N, Baniaga AE, Li Z, Levin DA. 2016. On the relative abundance of autopolyploids and allopolyploids. New Phytologist 210:391−98

doi: 10.1111/nph.13698
[4]

Huang S, Li R, Zhang Z, Li L, Gu X, et al. 2009. The genome of the cucumber, Cucumis sativus L. Nature Genetics 41:1275−81

doi: 10.1038/ng.475
[5]

Yu T, Ma X, Liu Z, Feng X, Wang Z, et al. 2022. TVIR: a comprehensive vegetable information resource database for comparative and functional genomic studies. Horticulture Research 9:uhac213

doi: 10.1093/hr/uhac213
[6]

Edger PP, Heidel-Fischer HM, Bekaert M, Rota J, Glöckner G, et al. 2015. The butterfly plant arms-race escalated by gene and genome duplications. Proceedings of the National Academy of Sciences of the United States of America 112:8362−66

doi: 10.1073/pnas.1503926112
[7]

Jiao Y, Li J, Tang H, Paterson AH. 2014. Integrated syntenic and phylogenomic analyses reveal an ancient genome duplication in monocots. The Plant Cell 26:2792−802

doi: 10.1105/tpc.114.127597
[8]

Jiao Y, Leebens-Mack J, Ayyampalayam S, Bowers JE, McKain MR, et al. 2012. A genome triplication associated with early diversification of the core eudicots. Genome Biology 13:R3

doi: 10.1186/gb-2012-13-1-r3
[9]

Chanderbali AS, Jin L, Xu Q, Zhang Y, Zhang J, et al. 2022. Buxus and Tetracentron genomes help resolve eudicot genome history. Nature Communications 13:643

doi: 10.1038/s41467-022-28312-w
[10]

Jiao Y, Wickett NJ, Ayyampalayam S, Chanderbali AS, Landherr L, et al. 2011. Ancestral polyploidy in seed plants and angiosperms. Nature 473:97−100

doi: 10.1038/nature09916
[11]

Soltis DE, Burleigh JG. 2009. Surviving the K-T mass extinction: new perspectives of polyploidization in angiosperms. Proceedings of the National Academy of Sciences of the United States of America 106:5455−56

doi: 10.1073/pnas.0901994106
[12]

Pfeil BE, Schlueter JA, Shoemaker RC, Doyle JJ. 2005. Placing paleopolyploidy in relation to taxon divergence: a phylogenetic analysis in legumes using 39 gene families. Systematic Biology 54:441−54

doi: 10.1080/10635150590945359
[13]

Zenil-Ferguson R, Burleigh JG, Freyman WA, Igić B, Mayrose I, et al. 2019. Interaction among ploidy, breeding system and lineage diversification. New Phytologist 224:1252−65

doi: 10.1111/nph.16184
[14]

Liu Y, Yu Y, Sun J, Cao Q, Tang Z, et al. 2019. Root-zone-specific sensitivity of K+-and Ca2+-permeable channels to H2O2 determines ion homeostasis in salinized diploid and hexaploid Ipomoea trifida. Journal of Experimental Botany 70:1389−405

doi: 10.1093/jxb/ery461
[15]

Chao D, Dilkes B, Luo H, Douglas A, Yakubova E, et al. 2013. Polyploids exhibit higher potassium uptake and salinity tolerance in Arabidopsis. Science 341:658−59

doi: 10.1126/science.1240561
[16]

Ruiz M, Quiñones A, Martínez-Cuenca MR, Aleza P, Morillon R, et al. 2016. Tetraploidy enhances the ability to exclude chloride from leaves in carrizo citrange seedlings. Journal of Plant Physiology 205:1−10

doi: 10.1016/j.jplph.2016.08.002
[17]

Wood TE, Takebayashi N, Barker MS, Mayrose I, Greenspoon PB, et al. 2009. The frequency of polyploid speciation in vascular plants. Proceedings of the National Academy of Sciences of the United States of America 106:13875−79

doi: 10.1073/pnas.0811575106
[18]

Kates HR, Johnson MG, Gardner EM, Zerega NJC, Wickett NJ. 2018. Allele phasing has minimal impact on phylogenetic reconstruction from targeted nuclear gene sequences in a case study of Artocarpus. American Journal of Botany 105:404−16

doi: 10.1002/ajb2.1068
[19]

Kamneva OK, Syring J, Liston A, Rosenberg NA. 2017. Evaluating allopolyploid origins in strawberries (Fragaria) using haplotypes generated from target capture sequencing. BMC Evolutionary Biology 17:180

doi: 10.1186/s12862-017-1019-7
[20]

Chawla HS, Lee H, Gabur I, Vollrath P, Tamilselvan-Nattar-Amutha S, et al. 2021. Long-read sequencing reveals widespread intragenic structural variants in a recent allopolyploid crop plant. Plant Biotechnology Journal 19:240−50

doi: 10.1111/pbi.13456
[21]

Zhou Q, Tang D, Huang W, Yang Z, Zhang Y, et al. 2020. Haplotype-resolved genome analyses of a heterozygous diploid potato. Nature Genetics 52:1018−23

doi: 10.1038/s41588-020-0699-x
[22]

Wang F, Xia Z, Zou M, Zhao L, Jiang S, et al. 2022. The autotetraploid potato genome provides insights into highly heterozygous species. Plant Biotechnology Journal 20:1996−2005

doi: 10.1111/pbi.13883
[23]

He Z, Ji R, Havlickova L, Wang L, Li Y, et al. 2021. Genome structural evolution in Brassica crops. Nature Plants 7:757−65

doi: 10.1038/s41477-021-00928-8
[24]

Cai X, Chang L, Zhang T, Chen H, Zhang L, et al. 2021. Impacts of allopolyploidization and structural variation on intraspecific diversification in Brassica rapa. Genome Biology 22:166

doi: 10.1186/s13059-021-02383-2
[25]

Hirakawa H, Shirasawa K, Kosugi S, Tashiro K, Nakayama S, et al. 2014. Dissection of the octoploid strawberry genome by deep sequencing of the genomes of Fragaria species. DNA Research 21:169−81

doi: 10.1093/dnares/dst049
[26]

Yu X, Wang P, Li J, Zhao Q, Ji C, et al. 2021. Whole-genome sequence of synthesized allopolyploids in Cucumis reveals insights into the genome evolution of allopolyploidization. Advanced Science 8:2004222

doi: 10.1002/advs.202004222
[27]

Wang M, Tu L, Yuan D, Zhu D, Shen C, et al. 2019. Reference genome sequences of two cultivated allotetraploid cottons, Gossypium hirsutum and Gossypium barbadense. Nature Genetics 51:224−29

doi: 10.1038/s41588-018-0282-x
[28]

Wang K, Wang J, Zhu C, Yang L, Ren Y, et al. 2021. African lungfish genome sheds light on the vertebrate water-to-land transition. Cell 184:1362−1376.e18

doi: 10.1016/j.cell.2021.01.047
[29]

Matthews BJ, Dudchenko O, Kingan SB, Koren S, Antoshechkin I, et al. 2018. Improved reference genome of Aedes aegypti informs arbovirus vector control. Nature 563:501−07

doi: 10.1038/s41586-018-0692-z
[30]

Zhang X, Zhang S, Zhao Q, Ming R, Tang H. 2019. Assembly of allele-aware, chromosomal-scale autopolyploid genomes based on Hi-C data. Nature Plants 5:833−45

doi: 10.1038/s41477-019-0487-8
[31]

Schrinner SD, Mari RS, Ebler J, Rautiainen M, Seillier L, et al. 2020. Haplotype threading: accurate polyploid phasing from long reads. Genome Biology 21:252

doi: 10.1186/s13059-020-02158-1
[32]

Koren S, Walenz BP, Berlin K, Miller JR, Bergman NH, et al. 2017. Canu: scalable and accurate long-read assembly via adaptive k-mer weighting and repeat separation. Genome Research 27:722−36

doi: 10.1101/gr.215087.116
[33]

Cheng H, Concepcion GT, Feng X, Zhang H, Li H. 2021. Haplotype-resolved de novo assembly using phased assembly graphs with hifiasm. Nature Methods 18:170−75

doi: 10.1038/s41592-020-01056-5
[34]

Zhang J, Zhang X, Tang H, Zhang Q, Hua X, et al. 2018. Allele-defined genome of the autopolyploid sugarcane Saccharum spontaneum L. Nature Genetics 50:1565−73

doi: 10.1038/s41588-018-0237-2
[35]

Zhou C, Olukolu B, Gemenet DC, Wu S, Gruneberg W, et al. 2020. Assembly of whole-chromosome pseudomolecules for polyploid plant genomes using outbred mapping populations. Nature Genetics 52:1256−64

doi: 10.1038/s41588-020-00717-7
[36]

Chen H, Zeng Y, Yang Y, Huang L, Tang B, et al. 2020. Allele-aware chromosome-level genome assembly and efficient transgene-free genome editing for the autotetraploid cultivated alfalfa. Nature Communications 11:2494

doi: 10.1038/s41467-020-16338-x
[37]

Wang Y, Yu J, Jiang M, Lei W, Zhang X, et al. 2023. Sequencing and assembly of polyploid genomes. In Polyploidy, ed. Van de Peer Y, volume 2545. New York, NY: Humana. pp. 429–58 https://doi.org/10.1007/978-1-0716-2561-3_23

[38]

Xu X, Pan S, Cheng S, Zhang B, Mu D, et al. 2011. Genome sequence and analysis of the tuber crop potato. Nature 475:189−95

doi: 10.1038/nature10158
[39]

Sato S, Tabata S, Hirakawa H, Asamizu E, Shirasawa K, et al. 2012. The tomato genome sequence provides insights into fleshy fruit evolution. Nature 485:635−41

doi: 10.1038/nature11119
[40]

Chalhoub B, Denoeud F, Liu S, Parkin IAP, Tang H, et al. 2014. Early allopolyploid evolution in the post-Neolithic Brassica napus oilseed genome. Science 345:950−53

doi: 10.1126/science.1253435
[41]

Kagale S, Koh C, Nixon J, Bollina V, Clarke WE, et al. 2014. The emerging biofuel crop Camelina sativa retains a highly undifferentiated hexaploid genome structure. Nature Communications 5:3706

doi: 10.1038/ncomms4706
[42]

Parkin IAP, Koh C, Tang H, Robinson SJ, Kagale S, et al. 2014. Transcriptome and methylome profiling reveals relics of genome dominance in the mesopolyploid Brassica oleracea. Genome Biology 15:R77

doi: 10.1186/gb-2014-15-6-r77
[43]

Yang J, Liu D, Wang X, Ji C, Cheng F, et al. 2016. The genome sequence of allopolyploid Brassica juncea and analysis of differential homoeolog gene expression influencing selection. Nature Genetics 48:1225−32

doi: 10.1038/ng.3657
[44]

Sun H, Wu S, Zhang G, Jiao C, Guo S, et al. 2017. Karyotype stability and unbiased fractionation in the paleo-allotetraploid Cucurbita genomes. Molecular Plant 10:1293−306

doi: 10.1016/j.molp.2017.09.003
[45]

Reyes-Chin-Wo S, Wang Z, Yang X, Kozik A, Arikit S, et al. 2017. Genome assembly with in vitro proximity ligation data and whole-genome triplication in lettuce. Nature Communications 8:14953

doi: 10.1038/ncomms14953
[46]

Edger PP, Poorten TJ, VanBuren R, Hardigan MA, Colle M, et al. 2019. Origin and evolution of the octoploid strawberry genome. Nature Genetics 51:541−47

doi: 10.1038/s41588-019-0356-4
[47]

Sun D, Wang C, Zhang X, Zhang W, Jiang H, et al. 2019. Draft genome sequence of cauliflower (Brassica oleracea L. var. botrytis) provides new insights into the C genome in Brassica species. Horticulture Research 6:82

doi: 10.1038/s41438-019-0164-0
[48]

Song J, Guan Z, Hu J, Guo C, Yang Z, et al. 2020. Eight high-quality genomes reveal pan-genome architecture and ecotype differentiation of Brassica napus. Nature Plants 6:34−45

doi: 10.1038/s41477-019-0577-7
[49]

Shen C, Du H, Chen Z, Lu H, Zhu F, et al. 2020. The chromosome-level genome sequence of the autotetraploid alfalfa and resequencing of core germplasms provide genomic resources for alfalfa research. Molecular Plant 13:1250−61

doi: 10.1016/j.molp.2020.07.003
[50]

Lv H, Wang Y, Han F, Ji J, Fang Z, et al. 2020. A high-quality reference genome for cabbage obtained with SMRT reveals novel genomic features and evolutionary characteristics. Scientific Reports 10:12394

doi: 10.1038/s41598-020-69389-x
[51]

Wei Q, Wang J, Wang W, Hu T, Hu H, et al. 2020. A high-quality chromosome-level genome assembly reveals genetics for important traits in eggplant. Horticulture Research 7:153

doi: 10.1038/s41438-020-00391-0
[52]

Sun X, Zhu S, Li N, Cheng Y, Zhao J, et al. 2020. A chromosome-level genome assembly of garlic (Allium sativum) provides insights into genome evolution and allicin biosynthesis. Molecular Plant 13:1328−39

doi: 10.1016/j.molp.2020.07.019
[53]

Chen X, Tong C, Zhang X, Song A, Hu M, et al. 2021. A high-quality Brassica napus genome reveals expansion of transposable elements, subgenome evolution and disease resistance. Plant Biotechnology Journal 19:615−30

doi: 10.1111/pbi.13493
[54]

Paritosh K, Yadava SK, Singh P, Bhayana L, Mukhopadhyay A, et al. 2021. A chromosome-scale assembly of allotetraploid Brassica juncea (AABB) elucidates comparative architecture of the A and B genomes. Plant Biotechnology Journal 19:602−14

doi: 10.1111/pbi.13492
[55]

Kang L, Qian L, Zheng M, Chen L, Chen H, et al. 2021. Genomic insights into the origin, domestication and diversification of Brassica juncea. Nature Genetics 53:1392−402

doi: 10.1038/s41588-021-00922-y
[56]

Guo N, Wang S, Gao L, Liu Y, Wang X, et al. 2021. Genome sequencing sheds light on the contribution of structural variants to Brassica oleracea diversification. BMC Biology 19:93

doi: 10.1186/s12915-021-01031-2
[57]

Sun H, Jiao W, Krause K, Campoy JA, Goel M, et al. 2022. Chromosome-scale and haplotype-resolved genome assembly of a tetraploid potato cultivar. Nature Genetics 54:342−48

doi: 10.1038/s41588-022-01015-0
[58]

Liao Y, Wang J, Zhu Z, Liu Y, Chen J, et al. 2022. The 3D architecture of the pepper genome and its relationship to function and evolution. Nature Communications 13:3479

doi: 10.1038/s41467-022-31112-x
[59]

Zhang X, Zhang S, Liu Z, Zhao W, Zhang X, et al. 2023. Characterization and acceleration of genome shuffling and ploidy reduction in synthetic allopolyploids by genome sequencing and editing. Nucleic Acids Research 51:198−217

doi: 10.1093/nar/gkac1209
[60]

Jayakodi M, Golicz AA, Kreplak J, Fechete LI, Angra D, et al. 2023. The giant diploid faba genome unlocks variation in a global protein crop. Nature 615:652−59

doi: 10.1038/s41586-023-05791-5
[61]

Shen F, Qin Y, Wang R, Huang X, Wang Y, et al. 2023. Comparative genomics reveals a unique nitrogen-carbon balance system in Asteraceae. Nature Communications 14:4334

doi: 10.1038/s41467-023-40002-9
[62]

Wong GKS, Soltis DE, Leebens-Mack J, Wickett NJ, Barker MS, et al. 2020. Sequencing and analyzing the transcriptomes of a thousand species across the tree of life for green plants. Annual Review of Plant Biology 71:741−65

doi: 10.1146/annurev-arplant-042916-041040
[63]

Wang J, Sun P, Li Y, Liu Y, Yang N, et al. 2018. An overlooked paleotetraploidization in Cucurbitaceae. Molecular Biology and Evolution 35:16−26

doi: 10.1093/molbev/msx242
[64]

Sun X, Feng D, Liu M, Qin R, Li Y, et al. 2022. Single-cell transcriptome reveals dominant subgenome expression and transcriptional response to heat stress in Chinese cabbage. Genome Biology 23:262

doi: 10.1186/s13059-022-02834-4
[65]

McClintock B. 1984. The significance of responses of the genome to challenge. Science 226:792−801

doi: 10.1126/science.15739260
[66]

Li Z, McKibben MTW, Finch GS, Blischak PD, Sutherland BL, et al. 2021. Patterns and processes of diploidization in land plants. Annual Review of Plant Biology 72:387−410

doi: 10.1146/annurev-arplant-050718-100344
[67]

Zou J, Mao L, Qiu J, Wang M, Jia L, et al. 2019. Genome-wide selection footprints and deleterious variations in young Asian allotetraploid rapeseed. Plant Biotechnology Journal 17:1998−2010

doi: 10.1111/pbi.13115
[68]

Zhang Z, Gou X, Xun H, Bian Y, Ma X, et al. 2020. Homoeologous exchanges occur through intragenic recombination generating novel transcripts and proteins in wheat and other polyploids. Proceedings of the National Academy of Sciences of the United States of America 117:14561−71

doi: 10.1073/pnas.2003505117
[69]

Gonzalo A, Lucas MO, Charpentier C, Sandmann G, Lloyd A, et al. 2019. Reducing MSH4 copy number prevents meiotic crossovers between non-homologous chromosomes in Brassica napus. Nature Communications 10:2354

doi: 10.1038/s41467-019-10010-9
[70]

Hurgobin B, Golicz AA, Bayer PE, Chan CKK, Tirnaz S, et al. 2018. Homoeologous exchange is a major cause of gene presence/absence variation in the amphidiploid Brassica napus. Plant Biotechnology Journal 16:1265−74

doi: 10.1111/pbi.12867
[71]

Lloyd A, Blary A, Charif D, Charpentier C, Tran J, et al. 2018. Homoeologous exchanges cause extensive dosage-dependent gene expression changes in an allopolyploid crop. New Phytologist 217:367−77

doi: 10.1111/nph.14836
[72]

Zhang H, Bian Y, Gou X, Zhu B, Xu C, et al. 2013. Persistent whole-chromosome aneuploidy is generally associated with nascent allohexaploid wheat. Proceedings of the National Academy of Sciences of the United States of America 110:3447−52

doi: 10.1073/pnas.1300153110
[73]

Glover NM, Redestig H, Dessimoz C. 2016. Homoeologs: what are they and how do we infer them? Trends in Plant Science 21:609−21

doi: 10.1016/j.tplants.2016.02.005
[74]

Ferreira de Carvalho J, Stoeckel S, Eber F, Lodé-Taburel M, Gilet MM, et al. 2021. Untangling structural factors driving genome stabilization in nascent Brassica napus allopolyploids. New Phytologist 230:2072−84

doi: 10.1111/nph.17308
[75]

Bayer PE, Scheben A, Golicz AA, Yuan Y, Faure S, et al. 2021. Modelling of gene loss propensity in the pangenomes of three Brassica species suggests different mechanisms between polyploids and diploids. Plant Biotechnology Journal 19:2488−500

doi: 10.1111/pbi.13674
[76]

Higgins EE, Howell EC, Armstrong SJ, Parkin IAP. 2021. A major quantitative trait locus on chromosome A9, BnaPh1, controls homoeologous recombination in Brassica napus. New Phytologist 229:3281−93

doi: 10.1111/nph.16986
[77]

Lysak MA, Berr A, Pecinka A, Schmidt R, McBreen K, et al. 2006. Mechanisms of chromosome number reduction in Arabidopsis thaliana and related Brassicaceae species. Proceedings of the National Academy of Sciences of the United States of America 103:5224−29

doi: 10.1073/pnas.0510791103
[78]

Bird KA, VanBuren R, Puzey JR, Edger PP. 2018. The causes and consequences of subgenome dominance in hybrids and recent polyploids. New Phytologist 220:87−93

doi: 10.1111/nph.15256
[79]

Alger EI, Edger PP. 2020. One subgenome to rule them all: underlying mechanisms of subgenome dominance. Current Opinion in Plant Biology 54:108−13

doi: 10.1016/j.pbi.2020.03.004
[80]

Edger PP, Smith R, McKain MR, Cooley AM, Vallejo-Marin M, et al. 2017. Subgenome dominance in an interspecific hybrid, synthetic allopolyploid, and a 140-year-old naturally established neo-allopolyploid monkeyflower. The Plant Cell 29:2150−67

doi: 10.1105/tpc.17.00010
[81]

Bird KA, Niederhuth CE, Ou S, Gehan M, Pires JC, et al. 2021. Replaying the evolutionary tape to investigate subgenome dominance in allopolyploid Brassica napus. New Phytologist 230:354−71

doi: 10.1111/nph.17137
[82]

Li M, Sun W, Wang F, Wu X, Wang J. 2021. Asymmetric epigenetic modification and homoeolog expression bias in the establishment and evolution of allopolyploid Brassica napus. New Phytologist 232:898−913

doi: 10.1111/nph.17621
[83]

Gao P, Quilichini TD, Yang H, Li Q, Nilsen KT, et al. 2022. Evolutionary divergence in embryo and seed coat development of U's Triangle Brassica species illustrated by a spatiotemporal transcriptome atlas. New Phytologist 233:30−51

doi: 10.1111/nph.17759
[84]

Zhang K, Zhang L, Cui Y, Yang Y, Wu J, et al. 2023. The lack of negative association between TE load and subgenome dominance in synthesized Brassica allotetraploids. Proceedings of the National Academy of Sciences of the United States of America 120:e2305208120

doi: 10.1073/pnas.2305208120
[85]

Martinez Palacios P, Jacquemot MP, Tapie M, Rousselet A, Diop M, et al. 2019. Assessing the response of small RNA populations to allopolyploidy using resynthesized Brassica napus allotetraploids. Molecular Biology and Evolution 36:709−26

doi: 10.1093/molbev/msz007
[86]

Jiao W, Yuan J, Jiang S, Liu Y, Wang L, et al. 2018. Asymmetrical changes of gene expression, small RNAs and chromatin in two resynthesized wheat allotetraploids. The Plant Journal 93:828−42

doi: 10.1111/tpj.13805
[87]

Wendel JF, Lisch D, Hu G, Mason AS. 2018. The long and short of doubling down: polyploidy, epigenetics, and the temporal dynamics of genome fractionation. Current Opinion in Genetics & Development 49:1−7

doi: 10.1016/j.gde.2018.01.004
[88]

Zhang Q, Guan P, Zhao L, Ma M, Xie L, et al. 2021. Asymmetric epigenome maps of subgenomes reveal imbalanced transcription and distinct evolutionary trends in Brassica napus. Molecular Plant 14:604−19

doi: 10.1016/j.molp.2020.12.020
[89]

Colle M, Leisner CP, Wai CM, Ou S, Bird KA, et al. 2019. Haplotype-phased genome and evolution of phytonutrient pathways of tetraploid blueberry. GigaScience 8:giz012

doi: 10.1093/gigascience/giz012
[90]

Sashidhar N, Harloff HJ, Jung C. 2020. Identification of phytic acid mutants in oilseed rape (Brassica napus) by large-scale screening of mutant populations through amplicon sequencing. New Phytologist 225:2022−34

doi: 10.1111/nph.16281
[91]

Sashidhar N, Harloff HJ, Potgieter L, Jung C. 2020. Gene editing of three BnITPK genes in tetraploid oilseed rape leads to significant reduction of phytic acid in seeds. Plant Biotechnology Journal 18:2241−50

doi: 10.1111/pbi.13380
[92]

Yang J, Wang J, Li Z, Li X, He Z, et al. 2021. Genomic signatures of vegetable and oilseed allopolyploid Brassica juncea and genetic loci controlling the accumulation of glucosinolates. Plant Biotechnology Journal 19:2619−28

doi: 10.1111/pbi.13687
[93]

Guo X, Liang J, Lin R, Zhang L, Zhang Z, et al. 2022. Single-cell transcriptome reveals differentiation between adaxial and abaxial mesophyll cells in Brassica rapa. Plant Biotechnology Journal 20:2233−35

doi: 10.1111/pbi.13919
[94]

McLeod L, Barchi L, Tumino G, Tripodi P, Salinier J, et al. 2023. Multi-environment association study highlights candidate genes for robust agronomic quantitative trait loci in a novel worldwide Capsicum core collection. The Plant Journal 116:1508−28

doi: 10.1111/tpj.16425
[95]

Sumitomo K, Shirasawa K, Isobe S, Hirakawa H, Hisamatsu T, et al. 2019. Genome-wide association study overcomes the genome complexity in autohexaploid chrysanthemum and tags SNP markers onto the flower color genes. Scientific Reports 9:13947

doi: 10.1038/s41598-019-50028-z
[96]

Yang X, Luo Z, Todd J, Sood S, Wang J. 2020. Genome-wide association study of multiple yield traits in a diversity panel of polyploid sugarcane (Saccharum spp.). The Plant Genome 13:e20006

doi: 10.1002/tpg2.20006
[97]

Zhang F, Qu L, Gu Y, Xu Z, Xue H. 2022. Resequencing and genome-wide association studies of autotetraploid potato. Molecular Horticulture 2:6

doi: 10.1186/s43897-022-00027-y
[98]

Xuan L, Yan T, Lu L, Zhao X, Wu D, et al. 2020. Genome-wide association study reveals new genes involved in leaf trichome formation in polyploid oilseed rape (Brassica napus L.). Plant, Cell & Environment 43:675−91

doi: 10.1111/pce.13694
[99]

Fan Z, Tieman DM, Knapp SJ, Zerbe P, Famula R, et al. 2022. A multi-omics framework reveals strawberry flavor genes and their regulatory elements. New Phytologist 236:1089−107

doi: 10.1111/nph.18416
[100]

Wu Y, Li D, Hu Y, Li H, Ramstein GP, et al. 2023. Phylogenomic discovery of deleterious mutations facilitates hybrid potato breeding. Cell 186:2313−2328.e15

doi: 10.1016/j.cell.2023.04.008