[1]

Shewry PR, Hey SJ. 2015. The contribution of wheat to human diet and health. Food and Energy Security 4:178−202

doi: 10.1002/fes3.64
[2]

Liu J, Yu LL, Wu Y. 2020. Bioactive Components and Health Beneficial Properties of Whole Wheat Foods. Journal of Agricultural and Food Chemistry 68:12904−15

doi: 10.1021/acs.jafc.0c00705
[3]

Andersson AAM, Andersson R, Piironen V, Lampi A-M, Nyström L, et al. 2013. Contents of dietary fibre components and their relation to associated bioactive components in whole grain wheat samples from the HEALTHGRAIN diversity screen. Food Chemistry 136:1243−48

doi: 10.1016/j.foodchem.2012.09.074
[4]

Murphy MM, Douglass JS, Birkett A. 2008. Resistant Starch Intakes in the United States. Journal of the American Dietetic Association 108:67−78

doi: 10.1016/j.jada.2007.10.012
[5]

Hemery Y, Rouau X, Lullien-Pellerin V, Barron C, Abecassis J. 2007. Dry processes to develop wheat fractions and products with enhanced nutritional quality. Journal of Cereal Science 46:327−47

doi: 10.1016/j.jcs.2007.09.008
[6]

Lu ZX, Walker KZ, Muir JG, O'Dea K. 2004. Arabinoxylan fibre improves metabolic control in people with Type II diabetes. European Journal of Clinical Nutrition 58:621−28

doi: 10.1038/sj.ejcn.1601857
[7]

Sima P, Vannucci L, Vetvicka V. 2018. β-glucans and cholesterol (Review). International Journal of Molecular Medicine 41:1799−808

doi: 10.3892/ijmm.2018.3411
[8]

Xia J, Zhu D, Wang R, Cui Y, Yan Y. 2018. Crop resistant starch and genetic improvement: a review of recent advances. Theoretical and Applied Genetics 131:2495−511

doi: 10.1007/s00122-018-3221-4
[9]

Park Y, Brinton LA, Subar AF, Hollenbeck A, Schatzkin A. 2009. Dietary fiber intake and risk of breast cancer in postmenopausal women: the National Institutes of Health-AARP Diet and Health Study. American Journal of Clinical Nutrition 90:644−51

doi: 10.3945/ajcn.2009.27758
[10]

Hazard B, Trafford K, Lovegrove A, Griffiths S, Uauy C, et al. 2020. Strategies to improve wheat for human health. Nature Food 1:475−80

doi: 10.1038/s43016-020-0134-6
[11]

Freeman J, Ward JL, Kosik O, Lovegrove A, Wilkinson MD, et al. 2017. Feruloylation and structure of arabinoxylan in wheat endosperm cell walls from RNAi lines with suppression of genes responsible for backbone synthesis and decoration. Plant Biotechnology Journal 15:1429−38

doi: 10.1111/pbi.12727
[12]

Lu ZX, Walker KZ, Muir JG, Mascara T, O'Dea K. 2000. Arabinoxylan fiber, a byproduct of wheat flour processing, reduces the postprandial glucose response in normoglycemic subjects. American Journal of Clinical Nutrition 71:1123−28

doi: 10.1093/ajcn/71.5.1123
[13]

Saulnier L, Sado PE, Branlard G, Charmet G, Guillon F. 2007. Wheat arabinoxylans: Exploiting variation in amount and composition to develop enhanced varieties. Journal of Cereal Science 46:261−81

doi: 10.1016/j.jcs.2007.06.014
[14]

Zannini E, Bravo Núñez Á, Sahin AW, Arendt EK. 2022. Arabinoxylans as Functional Food Ingredients: A Review. Foods 11:1026

doi: 10.3390/foods11071026
[15]

Pellny TK, Lovegrove A, Freeman J, Tosi P, Love CG, et al. 2012. Cell walls of developing wheat starchy endosperm: comparison of composition and RNA-Seq transcriptome. Plant Physiology 158:612−27

doi: 10.1104/pp.111.189191
[16]

Anders N, Wilkinson MD, Lovegrove A, Freeman J, Tryfona T, et al. 2012. Glycosyl transferases in family 61 mediate arabinofuranosyl transfer onto xylan in grasses. Proceedings of the National Academy of Sciences of the United States of America 109:989−93

doi: 10.1073/pnas.1115858109
[17]

Lovegrove A, Wilkinson MD, Freeman J, Pellny TK, Tosi P, et al. 2013. RNA interference suppression of genes in glycosyl transferase families 43 and 47 in wheat starchy endosperm causes large decreases in arabinoxylan content. Plant Physiology 163:95−107

doi: 10.1104/pp.113.222653
[18]

Charmet G, Masood-Quraishi U, Ravel C, Romeuf I, Balfourier F, et al. 2009. Genetics of dietary fibre in bread wheat. Euphytica 170:155−68

doi: 10.1007/s10681-009-0019-0
[19]

Nguyen VL, Huynh BL, Wallwork H, Stangoulis J. 2011. Identification of Quantitative Trait Loci for Grain Arabinoxylan Concentration in Bread Wheat. Crop Science 51:1143−50

doi: 10.2135/cropsci2010.08.0484
[20]

Yang L, Zhao D, Yan J, Zhang Y, Xia X, et al. 2016. QTL mapping of grain arabinoxylan contents in common wheat using a recombinant inbred line population. Euphytica 208:205−14

doi: 10.1007/s10681-015-1576-z
[21]

Quraishi UM, Murat F, Abrouk M, Pont C, Confolent C, et al. 2011. Combined meta-genomics analyses unravel candidate genes for the grain dietary fiber content in bread wheat (Triticum aestivum L.). Functional and Integrative Genomics 11:71−83

doi: 10.1007/s10142-010-0183-2
[22]

Marcotuli I, Houston K, Waugh R, Fincher GB, Burton RA, et al. 2015. Genome wide association mapping for arabinoxylan content in a collection of tetraploid wheats. PLoS ONE 10:e0132787

doi: 10.1371/journal.pone.0132787
[23]

Mitchell RA, Dupree P, Shewry PR. 2007. A novel bioinformatics approach identifies candidate genes for the synthesis and feruloylation of arabinoxylan. Plant Physiology 144:43−53

doi: 10.1104/pp.106.094995
[24]

Lee MH, Park J, Kim KH, Kim KM, Kang CS, et al. 2023. Genome-wide association study of arabinoxylan content from a 562 hexaploid wheat collection. Plants 12:184

doi: 10.3390/plants12010184
[25]

Lovegrove A, Wingen LU, Plummer A, Wood A, Passmore D, et al. 2020. Identification of a major QTL and associated molecular marker for high arabinoxylan fibre in white wheat flour. PLoS ONE 15:e0227826

doi: 10.1371/journal.pone.0227826
[26]

Ibba MI, Juliana P, Hernández-Espinosa N, Posadas-Romano G, Dreisigacker S, et al. 2021. Genome-wide association analysis for arabinoxylan content in common wheat (T. Aestivum L.) flour. Journal of Cereal Science 98:103166

doi: 10.1016/j.jcs.2021.103166
[27]

Freeman J, Lovegrove A, Wilkinson MD, Saulnier L, Shewry PR, et al. 2016. Effect of suppression of arabinoxylan synthetic genes in wheat endosperm on chain length of arabinoxylan and extract viscosity. Plant Biotechnology Journal 14:109−16

doi: 10.1111/pbi.12361
[28]

Pellny TK, Patil A, Wood AJ, Freeman J, Halsey K, et al. 2020. Loss of TaIRX9b gene function in wheat decreases chain length and amount of arabinoxylan in grain but increases cross-linking. Plant Biotechnology Journal 18:2316−27

doi: 10.1111/pbi.13393
[29]

Cavallero A, Empilli S, Brighenti F, Stanca AM. 2002. High (1→3,1→4)-β-glucan barley fractions in bread making and their effects on human glycemic response. Journal of Cereal Science 36:59−66

doi: 10.1006/jcrs.2002.0454
[30]

Vetvicka V, Vetvickova J. 2009. Effects of yeast-derived β-glucans on blood cholesterol and macrophage functionality. Journal of Immunotoxicology 6:30−35

doi: 10.1080/15476910802604317
[31]

Izydorczyk MS, Dexter JE. 2008. Barley β-glucans and arabinoxylans: Molecular structure, physicochemical properties, and uses in food products–a Review. Food Research International 41:850−68

doi: 10.1016/j.foodres.2008.04.001
[32]

Danilova TV, Friebe B, Gill BS, Poland J, Jackson E. 2018. Development of a complete set of wheat-barley group-7 Robertsonian translocation chromosomes conferring an increased content of β-glucan. Theoretical and Applied Genetics 131:377−88

doi: 10.1007/s00122-017-3008-z
[33]

Jääskeläinen AS, Holopainen-Mantila U, Tamminen T, Vuorinen T. 2013. Endosperm and aleurone cell structure in barley and wheat as studied by optical and Raman microscopy. Journal of Cereal Science 57:543−50

doi: 10.1016/j.jcs.2013.02.007
[34]

Bulone V, Schwerdt JG, Fincher GB. 2019. Co-evolution of enzymes involved in plant cell wall metabolism in the grasses. Frontiers in Plant Science 10:1009

doi: 10.3389/fpls.2019.01009
[35]

Marcotuli I, Houston K, Schwerdt JG, Waugh R, Fincher GB, et al. 2016. Genetic diversity and genome wide association study of β-glucan content in tetraploid wheat grains. PLoS ONE 11:e0152590

doi: 10.1371/journal.pone.0152590
[36]

Marcotuli I, Gadaleta A, Mangini G, Signorile AM, Zacheo SA, et al. 2017. Development of a high-density SNP-based linkage map and detection of QTL for β-glucans, protein content, grain yield per spike and heading time in durum wheat. International Journal of Molecular Sciences 18:1329

doi: 10.3390/ijms18061329
[37]

Lombard V, Golaconda Ramulu H, Drula E, Coutinho PM, Henrissat B. 2014. The carbohydrate-active enzymes database (CAZy) in 2013. Nucleic Acids Research 42:D490−D495

doi: 10.1093/nar/gkt1178
[38]

Manickavelu A, Kawaura K, Imamura H, Mori M, Ogihara Y. 2011. Molecular mapping of quantitative trait loci for domestication traits and β-glucan content in a wheat recombinant inbred line population. Euphytica 177:179−90

doi: 10.1007/s10681-010-0217-9
[39]

Ivanizs L, Marcotuli I, Rakszegi M, Kalapos B, Szőke-Pázsi K, et al. 2022. Identification of new QTLs for dietary fiber content in Aegilops biuncialis. International Journal of Molecular Sciences 23:3821

doi: 10.3390/ijms23073821
[40]

Marcotuli I, Colasuonno P, Hsieh YSY, Fincher GB, Gadaleta A. 2020. Non-starch polysaccharides in durum wheat: a review. International Journal of Molecular Sciences 21:2933

doi: 10.3390/ijms21082933
[41]

Botticella E, Savatin DV, Sestili F. 2021. The triple jags of dietary fibers in cereals: How biotechnology is longing for high fiber grains. Frontiers in Plant Science 12:745579

doi: 10.3389/fpls.2021.745579
[42]

Nemeth C, Freeman J, Jones HD, Sparks C, Pellny TK, et al. 2010. Down-regulation of the CSLF6 gene results in decreased (1,3;1,4)-β-D-glucan in endosperm of wheat. Plant Physiology 152:1209−18

doi: 10.1104/pp.109.151712
[43]

Marcotuli I, Colasuonno P, Blanco A, Gadaleta A. 2018. Expression analysis of cellulose synthase-like genes in durum wheat. Scientific Reports 8:15675

doi: 10.1038/s41598-018-34013-6
[44]

Danilova TV, Poland J, Friebe B. 2019. Production of a complete set of wheat-barley group-7 chromosome recombinants with increased grain β-glucan content. Theoretical and Applied Genetics 132:3129−41

doi: 10.1007/s00122-019-03411-3
[45]

Burton RA, Jobling SA, Harvey AJ, Shirley NJ, Mather DE, et al. 2008. The genetics and transcriptional profiles of the cellulose synthase-like HvCslF gene family in barley. Plant Physiology 146:1821−33

doi: 10.1104/pp.107.114694
[46]

Türkösi E, Darko E, Rakszegi M, Molnár I, Molnár-Láng M, et al. 2018. Development of a new 7BS. 7HL winter wheat-winter barley Robertsonian translocation line conferring increased salt tolerance and (1,3;1,4)-β-D-glucan content. PLoS ONE 13:e0206248

doi: 10.1371/journal.pone.0206248
[47]

Cseh A, Soós V, Rakszegi M, Türkösi E, Balázs E, et al. 2013. Expression of HvCslF9 and HvCslF6 barley genes in the genetic background of wheat and their influence on the wheat β-glucan content. Annals of Applied Biology 163:142−50

doi: 10.1111/aab.12043
[48]

Marcotuli I, Colasuonno P, Cutillo S, Simeone R, Blanco A, et al. 2019. β-glucan content in a panel of Triticum and Aegilops genotypes. Genetic Resources and Crop Evolution 66:897−907

doi: 10.1007/s10722-019-00753-1
[49]

Sestili F, Palombieri S, Botticella E, Mantovani P, Bovina R, et al. 2015. TILLING mutants of durum wheat result in a high amylose phenotype and provide information on alternative splicing mechanisms. Plant Science 233:127−33

doi: 10.1016/j.plantsci.2015.01.009
[50]

Regina A, Berbezy P, Kosar-Hashemi B, Li S, Cmiel M, et al. 2015. A genetic strategy generating wheat with very high amylose content. Plant Biotechnology Journal 13:1276−86

doi: 10.1111/pbi.12345
[51]

Englyst HN, Kingman SM, Cummings JH. 1992. Classification and measurement of nutritionally important starch fractions. European Journal of Clinical Nutrition 46(Suppl 2):S33−S50

[52]

Sajilata MG, Singhal RS, Kulkarni PR. 2006. Resistant starch − A review. Comprehensive Reviews in Food Science and Food Safety 5:1−17

doi: 10.1111/j.1541-4337.2006.tb00076.x
[53]

Harris KF. 2019. An introductory review of resistant starch type 2 from high-amylose cereal grains and its effect on glucose and insulin homeostasis. Nutrition Reviews 77:748−64

doi: 10.1093/nutrit/nuz040
[54]

Zeeman SC, Kossmann J, Smith AM. 2010. Starch: its metabolism, evolution, and biotechnological modification in plants. Annual Review of Plant Biology 61:209−34

doi: 10.1146/annurev-arplant-042809-112301
[55]

Seung D, Smith AM. 2019. Starch granule initiation and morphogenesis—progress in Arabidopsis and cereals. Journal of Experimental Botany 70:771−84

doi: 10.1093/jxb/ery412
[56]

MacNeill GJ, Mehrpouyan S, Minow MAA, Patterson JA, Tetlow IJ, et al. 2017. Starch as a source, starch as a sink: the bifunctional role of starch in carbon allocation. Journal of Experimental Botany 68:4433−53

doi: 10.1093/jxb/erx291
[57]

Chen MH, Bergman CJ, McClung AM, Everette JD, Tabien RE. 2017. Resistant starch: Variation among high amylose rice varieties and its relationship with apparent amylose content, pasting properties and cooking methods. Food Chemistry 234:180−89

doi: 10.1016/j.foodchem.2017.04.170
[58]

Kumar R, Kumar A, Sharma NK, Kaur N, Chunduri V, et al. 2016. Soft and hard textured wheat differ in starch properties as indicated by Trimodal distribution, morphology, thermal and crystalline properties. PLoS ONE 11:e0147622

doi: 10.1371/journal.pone.0147622
[59]

Ahmed Z, Tetlow IJ, Falk DE, Liu Q, Emes MJ. 2016. Resistant starch content is related to granule size in barley. Cereal Chemistry 93:618−30

doi: 10.1094/CCHEM-02-16-0025-R
[60]

Sangwongchai W, Tananuwong K, Krusong K, Natee S, Thitisaksakul M. 2023. Starch chemical composition and molecular structure in relation to physicochemical characteristics and resistant starch content of four Thai commercial rice cultivars differing in pasting properties. Polymers 15:574

doi: 10.3390/polym15030574
[61]

Feng N, He Z, Zhang Y, Xia X, Zhang Y. 2013. QTL mapping of starch granule size in common wheat using recombinant inbred lines derived from a PH82-2/Neixiang 188 cross. The Crop Journal 1:166−71

doi: 10.1016/j.cj.2013.07.003
[62]

Howard T, Rejab NA, Griffiths S, Leigh F, Leverington-Waite M, et al. 2011. Identification of a major QTL controlling the content of B-type starch granules in Aegilops. Journal of Experimental Botany 62:2217−28

doi: 10.1093/jxb/erq423
[63]

Chia T, Chirico M, King R, Ramirez-Gonzalez R, Saccomanno B, et al. 2020. A carbohydrate-binding protein, B-GRANULE CONTENT 1, influences starch granule size distribution in a dose-dependent manner in polyploid wheat. Journal of Experimental Botany 71:105−15

doi: 10.1093/jxb/erz405
[64]

Li C, Dhital S, Gidley MJ. 2022. High-amylose wheat bread with reduced in vitro digestion rate and enhanced resistant starch content. Food Hydrocolloids 123:107181

doi: 10.1016/j.foodhyd.2021.107181
[65]

Mishra A, Sharma V, Rahim MS, Sonah H, Pal D, et al. 2021. Genotyping-by-sequencing based QTL mapping identified a novel waxy allele contributing to high amylose starch in wheat. Euphytica 217:131

doi: 10.1007/s10681-021-02861-5
[66]

Sharma V, Jahan K, Kumar P, Puri A, Sharma VK, et al. 2022. Mechanistic insights into granule-bound starch synthase I (GBSSI. L539P) allele in high amylose starch biosynthesis in wheat (Triticum aestivum L. ). Functional and Integrative Genomics 23:20

doi: 10.1007/s10142-022-00923-y
[67]

Wang L, Li W, Pang H, Yin Y, Yuan H, et al. 2009. Selection and verification of a resistant starch-linked SSR marker in wheat. Journal of Triticeae Crops 29:390−95

[68]

Mishra A, Singh A, Sharma M, Kumar P, Roy J. 2016. Development of EMS-induced mutation population for amylose and resistant starch variation in bread wheat (Triticum aestivum) and identification of candidate genes responsible for amylose variation. BMC Plant Biology 16:217

doi: 10.1186/s12870-016-0896-z
[69]

Irshad A, Guo H, Ur Rehman S, Gu J, Wang C, et al. 2022. Screening of induced mutants led to the identification of starch biosynthetic genes associated with improved resistant starch in wheat. International Journal of Molecular Sciences 23:10741

doi: 10.3390/ijms231810741
[70]

Hazard B, Zhang X, Naemeh M, Hamilton MK, Rust B, et al. 2015. Mutations in durum wheat SBEII genes affect grain yield components, quality, and fermentation responses in rats. Crop Science 55:2813−25

doi: 10.2135/cropsci2015.03.0179
[71]

Schönhofen A, Zhang X-q, Dubcovsky J. 2017. Combined mutations in five wheat STARCH BRANCHING ENZYME II genes improve resistant starch but affect grain yield and bread-making quality. Journal of Cereal Science 75:165−74

doi: 10.1016/j.jcs.2017.03.028
[72]

Fahy B, Gonzalez O, Savva GM, Ahn-Jarvis JH, Warren FJ, et al. 2022. Loss of starch synthase IIIa changes starch molecular structure and granule morphology in grains of hexaploid bread wheat. Scientific Reports 12:10806

doi: 10.1038/s41598-022-14995-0
[73]

Schoen A, Joshi A, Tiwari V, Gill BS, Rawat N. 2021. Triple null mutations in starch synthase SSIIa gene homoeologs lead to high amylose and resistant starch in hexaploid wheat. BMC Plant Biology 21:74

doi: 10.1186/s12870-020-02822-5
[74]

Hogg AC, Gause K, Hofer P, Martin JM, Graybosch RA, et al. 2013. Creation of a high-amylose durum wheat through mutagenesis of starch synthase II (SSIIa). Journal of Cereal Science 57:377−83

doi: 10.1016/j.jcs.2013.01.001
[75]

Hogg AC, Martin JM, Manthey FA, Giroux MJ. 2015. Nutritional and Quality Traits of Pasta Made from SSIIa Null High-Amylose Durum Wheat. Cereal Chemistry 92:395−400

doi: 10.1094/CCHEM-12-14-0246-R
[76]

Botticella E, Sestili F, Sparla F, Moscatello S, Marri L, et al. 2018. Combining mutations at genes encoding key enzymes involved in starch synthesis affects the amylose content, carbohydrate allocation and hardness in the wheat grain. Plant Biotechnology Journal 16:1723−34

doi: 10.1111/pbi.12908
[77]

Schönhofen A, Hazard B, Zhang X, Dubcovsky J. 2016. Registration of common wheat germplasm with mutations in SBEII genes conferring increased grain amylose and resistant starch content. Journal of Plant Registrations 10:200−5

doi: 10.3198/jpr2015.10.0066crg
[78]

Botticella E, Sestili F, Ferrazzano G, Mantovani P, Cammerata A, et al. 2016. The impact of the SSIIa null mutations on grain traits and composition in durum wheat. Breeding Science 66:572−79

doi: 10.1270/jsbbs.16025
[79]

Regina A, Bird A, Topping D, Bowden S, Freeman J, et al. 2006. High-amylose wheat generated by RNA interference improves indices of large-bowel health in rats. Proceedings of the National Academy of Sciences of the United States of America 103:3546−51

doi: 10.1073/pnas.0510737103
[80]

Sestili F, Janni M, Doherty A, Botticella E, D’Ovidio R, et al. 2010. Increasing the amylose content of durum wheat through silencing of the SBEIIa genes. BMC Plant Biology 10:144

doi: 10.1186/1471-2229-10-144
[81]

McMaugh SJ, Thistleton JL, Anschaw E, Luo J, Konik-Rose C, et al. 2014. Suppression of starch synthase I expression affects the granule morphology and granule size and fine structure of starch in wheat endosperm. Journal of Experimental Botany 65:2189−201

doi: 10.1093/jxb/eru095
[82]

Wang Y, Liu X, Zheng X, Wang W, Yin X, et al. 2021. Creation of aromatic maize by CRISPR/Cas. Journal of Integrative Plant Biology 63:1664−70

doi: 10.1111/jipb.13105
[83]

Wang W, Wei X, Jiao G, Chen W, Wu Y, et al. 2020. GBSS-BINDING PROTEIN, encoding a CBM48 domain-containing protein, affects rice quality and yield. Journal of Integrative Plant Biology 62:948−66

doi: 10.1111/jipb.12866
[84]

Huang X, Su F, Huang S, Mei F, Niu X, et al. 2021. Novel Wx alleles generated by base editing for improvement of rice grain quality. Journal of Integrative Plant Biology 63:1632−38

doi: 10.1111/jipb.13098
[85]

Zhang J, Zhang H, Botella JR, Zhu JK. 2018. Generation of new glutinous rice by CRISPR/Cas9-targeted mutagenesis of the Waxy gene in elite rice varieties. Journal of Integrative Plant Biology 60:369−75

doi: 10.1111/jipb.12620
[86]

Li J, Jiao G, Sun Y, Chen J, Zhong Y, et al. 2021. Modification of starch composition, structure and properties through editing of TaSBEIIa in both winter and spring wheat varieties by CRISPR/Cas9. Plant Biotechnology Journal 19:937−51

doi: 10.1111/pbi.13519
[87]

Gómez M, Gutkoski LC, Bravo-Núñez Á. 2020. Understanding whole-wheat flour and its effect in breads: A review. Comprehensive Reviews in Food Science and Food Safety 19:3241−65

doi: 10.1111/1541-4337.12625
[88]

Li DQ, Wu XB, Wang HF, Feng X, Yan SJ, et al. 2021. Defective mitochondrial function by mutation in THICK ALEURONE 1 encoding a mitochondrion-targeted single-stranded DNA-binding protein leads to increased aleurone cell layers and improved nutrition in rice. Molecular Plant 14:1343−61

doi: 10.1016/j.molp.2021.05.016
[89]

Liu J, Wu X, Yao X, Yu R, Larkin PJ, et al. 2018. Mutations in the DNA demethylase OsROS1 result in a thickened aleurone and improved nutritional value in rice grains. Proceedings of the National Academy of Sciences 115:11327−32

doi: 10.1073/pnas.1806304115
[90]

Chen Q, Yang C, Zhang Z, Wang Z, Chen Y, et al. 2022. Unprocessed wheat γ-gliadin reduces gluten accumulation associated with the endoplasmic reticulum stress and elevated cell death. New Phytologist 236:146−64

doi: 10.1111/nph.18316
[91]

Huang L, Li Q, Zhang C, Chu R, Gu Z, et al. 2020. Creating novel Wx alleles with fine-tuned amylose levels and improved grain quality in rice by promoter editing using CRISPR/Cas9 system. Plant Biotechnology Journal 18:2164−66

doi: 10.1111/pbi.13391
[92]

Xu Y, Lin Q, Li X, Wang F, Chen Z, et al. 2021. Fine-tuning the amylose content of rice by precise base editing of the Wx gene. Plant Biotechnology Journal 19:11−13

doi: 10.1111/pbi.13433
[93]

Huang L, Gu Z, Chen Z, Yu J, Chu R, et al. 2021. Improving rice eating and cooking quality by coordinated expression of the major starch synthesis-related genes, SSII and Wx, in endosperm. Plant Molecular Biology 106:419−32

doi: 10.1007/s11103-021-01162-8
[94]

Song X, Meng X, Guo H, Cheng Q, Jing Y, et al. 2022. Targeting a gene regulatory element enhances rice grain yield by decoupling panicle number and size. Nature Biotechnology 40:1403−11

doi: 10.1038/s41587-022-01281-7
[95]

Liu L, Gallagher J, Arevalo ED, Chen R, Skopelitis T, et al. 2021. Enhancing grain-yield-related traits by CRISPR–Cas9 promoter editing of maize CLE genes. Nature Plants 7:287−94

doi: 10.1038/s41477-021-00858-5
[96]

Ghoshal B, Picard CL, Vong B, Feng S, Jacobsen SE. 2021. CRISPR-based targeting of DNA methylation in Arabidopsis thaliana by a bacterial CG-specific DNA methyltransferase. Proceedings of the National Academy of Sciences of the United States of America 118:e2125016118

doi: 10.1073/pnas.2125016118