[1]
|
Shewry PR, Hey SJ. 2015. The contribution of wheat to human diet and health. Food and Energy Security 4:178−202 doi: 10.1002/fes3.64
CrossRef Google Scholar
|
[2]
|
Liu J, Yu LL, Wu Y. 2020. Bioactive Components and Health Beneficial Properties of Whole Wheat Foods. Journal of Agricultural and Food Chemistry 68:12904−15 doi: 10.1021/acs.jafc.0c00705
CrossRef Google Scholar
|
[3]
|
Andersson AAM, Andersson R, Piironen V, Lampi A-M, Nyström L, et al. 2013. Contents of dietary fibre components and their relation to associated bioactive components in whole grain wheat samples from the HEALTHGRAIN diversity screen. Food Chemistry 136:1243−48 doi: 10.1016/j.foodchem.2012.09.074
CrossRef Google Scholar
|
[4]
|
Murphy MM, Douglass JS, Birkett A. 2008. Resistant Starch Intakes in the United States. Journal of the American Dietetic Association 108:67−78 doi: 10.1016/j.jada.2007.10.012
CrossRef Google Scholar
|
[5]
|
Hemery Y, Rouau X, Lullien-Pellerin V, Barron C, Abecassis J. 2007. Dry processes to develop wheat fractions and products with enhanced nutritional quality. Journal of Cereal Science 46:327−47 doi: 10.1016/j.jcs.2007.09.008
CrossRef Google Scholar
|
[6]
|
Lu ZX, Walker KZ, Muir JG, O'Dea K. 2004. Arabinoxylan fibre improves metabolic control in people with Type II diabetes. European Journal of Clinical Nutrition 58:621−28 doi: 10.1038/sj.ejcn.1601857
CrossRef Google Scholar
|
[7]
|
Sima P, Vannucci L, Vetvicka V. 2018. β-glucans and cholesterol (Review). International Journal of Molecular Medicine 41:1799−808 doi: 10.3892/ijmm.2018.3411
CrossRef Google Scholar
|
[8]
|
Xia J, Zhu D, Wang R, Cui Y, Yan Y. 2018. Crop resistant starch and genetic improvement: a review of recent advances. Theoretical and Applied Genetics 131:2495−511 doi: 10.1007/s00122-018-3221-4
CrossRef Google Scholar
|
[9]
|
Park Y, Brinton LA, Subar AF, Hollenbeck A, Schatzkin A. 2009. Dietary fiber intake and risk of breast cancer in postmenopausal women: the National Institutes of Health-AARP Diet and Health Study. American Journal of Clinical Nutrition 90:644−51 doi: 10.3945/ajcn.2009.27758
CrossRef Google Scholar
|
[10]
|
Hazard B, Trafford K, Lovegrove A, Griffiths S, Uauy C, et al. 2020. Strategies to improve wheat for human health. Nature Food 1:475−80 doi: 10.1038/s43016-020-0134-6
CrossRef Google Scholar
|
[11]
|
Freeman J, Ward JL, Kosik O, Lovegrove A, Wilkinson MD, et al. 2017. Feruloylation and structure of arabinoxylan in wheat endosperm cell walls from RNAi lines with suppression of genes responsible for backbone synthesis and decoration. Plant Biotechnology Journal 15:1429−38 doi: 10.1111/pbi.12727
CrossRef Google Scholar
|
[12]
|
Lu ZX, Walker KZ, Muir JG, Mascara T, O'Dea K. 2000. Arabinoxylan fiber, a byproduct of wheat flour processing, reduces the postprandial glucose response in normoglycemic subjects. American Journal of Clinical Nutrition 71:1123−28 doi: 10.1093/ajcn/71.5.1123
CrossRef Google Scholar
|
[13]
|
Saulnier L, Sado PE, Branlard G, Charmet G, Guillon F. 2007. Wheat arabinoxylans: Exploiting variation in amount and composition to develop enhanced varieties. Journal of Cereal Science 46:261−81 doi: 10.1016/j.jcs.2007.06.014
CrossRef Google Scholar
|
[14]
|
Zannini E, Bravo Núñez Á, Sahin AW, Arendt EK. 2022. Arabinoxylans as Functional Food Ingredients: A Review. Foods 11:1026 doi: 10.3390/foods11071026
CrossRef Google Scholar
|
[15]
|
Pellny TK, Lovegrove A, Freeman J, Tosi P, Love CG, et al. 2012. Cell walls of developing wheat starchy endosperm: comparison of composition and RNA-Seq transcriptome. Plant Physiology 158:612−27 doi: 10.1104/pp.111.189191
CrossRef Google Scholar
|
[16]
|
Anders N, Wilkinson MD, Lovegrove A, Freeman J, Tryfona T, et al. 2012. Glycosyl transferases in family 61 mediate arabinofuranosyl transfer onto xylan in grasses. Proceedings of the National Academy of Sciences of the United States of America 109:989−93 doi: 10.1073/pnas.1115858109
CrossRef Google Scholar
|
[17]
|
Lovegrove A, Wilkinson MD, Freeman J, Pellny TK, Tosi P, et al. 2013. RNA interference suppression of genes in glycosyl transferase families 43 and 47 in wheat starchy endosperm causes large decreases in arabinoxylan content. Plant Physiology 163:95−107 doi: 10.1104/pp.113.222653
CrossRef Google Scholar
|
[18]
|
Charmet G, Masood-Quraishi U, Ravel C, Romeuf I, Balfourier F, et al. 2009. Genetics of dietary fibre in bread wheat. Euphytica 170:155−68 doi: 10.1007/s10681-009-0019-0
CrossRef Google Scholar
|
[19]
|
Nguyen VL, Huynh BL, Wallwork H, Stangoulis J. 2011. Identification of Quantitative Trait Loci for Grain Arabinoxylan Concentration in Bread Wheat. Crop Science 51:1143−50 doi: 10.2135/cropsci2010.08.0484
CrossRef Google Scholar
|
[20]
|
Yang L, Zhao D, Yan J, Zhang Y, Xia X, et al. 2016. QTL mapping of grain arabinoxylan contents in common wheat using a recombinant inbred line population. Euphytica 208:205−14 doi: 10.1007/s10681-015-1576-z
CrossRef Google Scholar
|
[21]
|
Quraishi UM, Murat F, Abrouk M, Pont C, Confolent C, et al. 2011. Combined meta-genomics analyses unravel candidate genes for the grain dietary fiber content in bread wheat (Triticum aestivum L.). Functional and Integrative Genomics 11:71−83 doi: 10.1007/s10142-010-0183-2
CrossRef Google Scholar
|
[22]
|
Marcotuli I, Houston K, Waugh R, Fincher GB, Burton RA, et al. 2015. Genome wide association mapping for arabinoxylan content in a collection of tetraploid wheats. PLoS ONE 10:e0132787 doi: 10.1371/journal.pone.0132787
CrossRef Google Scholar
|
[23]
|
Mitchell RA, Dupree P, Shewry PR. 2007. A novel bioinformatics approach identifies candidate genes for the synthesis and feruloylation of arabinoxylan. Plant Physiology 144:43−53 doi: 10.1104/pp.106.094995
CrossRef Google Scholar
|
[24]
|
Lee MH, Park J, Kim KH, Kim KM, Kang CS, et al. 2023. Genome-wide association study of arabinoxylan content from a 562 hexaploid wheat collection. Plants 12:184 doi: 10.3390/plants12010184
CrossRef Google Scholar
|
[25]
|
Lovegrove A, Wingen LU, Plummer A, Wood A, Passmore D, et al. 2020. Identification of a major QTL and associated molecular marker for high arabinoxylan fibre in white wheat flour. PLoS ONE 15:e0227826 doi: 10.1371/journal.pone.0227826
CrossRef Google Scholar
|
[26]
|
Ibba MI, Juliana P, Hernández-Espinosa N, Posadas-Romano G, Dreisigacker S, et al. 2021. Genome-wide association analysis for arabinoxylan content in common wheat (T. Aestivum L.) flour. Journal of Cereal Science 98:103166 doi: 10.1016/j.jcs.2021.103166
CrossRef Google Scholar
|
[27]
|
Freeman J, Lovegrove A, Wilkinson MD, Saulnier L, Shewry PR, et al. 2016. Effect of suppression of arabinoxylan synthetic genes in wheat endosperm on chain length of arabinoxylan and extract viscosity. Plant Biotechnology Journal 14:109−16 doi: 10.1111/pbi.12361
CrossRef Google Scholar
|
[28]
|
Pellny TK, Patil A, Wood AJ, Freeman J, Halsey K, et al. 2020. Loss of TaIRX9b gene function in wheat decreases chain length and amount of arabinoxylan in grain but increases cross-linking. Plant Biotechnology Journal 18:2316−27 doi: 10.1111/pbi.13393
CrossRef Google Scholar
|
[29]
|
Cavallero A, Empilli S, Brighenti F, Stanca AM. 2002. High (1→3,1→4)-β-glucan barley fractions in bread making and their effects on human glycemic response. Journal of Cereal Science 36:59−66 doi: 10.1006/jcrs.2002.0454
CrossRef Google Scholar
|
[30]
|
Vetvicka V, Vetvickova J. 2009. Effects of yeast-derived β-glucans on blood cholesterol and macrophage functionality. Journal of Immunotoxicology 6:30−35 doi: 10.1080/15476910802604317
CrossRef Google Scholar
|
[31]
|
Izydorczyk MS, Dexter JE. 2008. Barley β-glucans and arabinoxylans: Molecular structure, physicochemical properties, and uses in food products–a Review. Food Research International 41:850−68 doi: 10.1016/j.foodres.2008.04.001
CrossRef Google Scholar
|
[32]
|
Danilova TV, Friebe B, Gill BS, Poland J, Jackson E. 2018. Development of a complete set of wheat-barley group-7 Robertsonian translocation chromosomes conferring an increased content of β-glucan. Theoretical and Applied Genetics 131:377−88 doi: 10.1007/s00122-017-3008-z
CrossRef Google Scholar
|
[33]
|
Jääskeläinen AS, Holopainen-Mantila U, Tamminen T, Vuorinen T. 2013. Endosperm and aleurone cell structure in barley and wheat as studied by optical and Raman microscopy. Journal of Cereal Science 57:543−50 doi: 10.1016/j.jcs.2013.02.007
CrossRef Google Scholar
|
[34]
|
Bulone V, Schwerdt JG, Fincher GB. 2019. Co-evolution of enzymes involved in plant cell wall metabolism in the grasses. Frontiers in Plant Science 10:1009 doi: 10.3389/fpls.2019.01009
CrossRef Google Scholar
|
[35]
|
Marcotuli I, Houston K, Schwerdt JG, Waugh R, Fincher GB, et al. 2016. Genetic diversity and genome wide association study of β-glucan content in tetraploid wheat grains. PLoS ONE 11:e0152590 doi: 10.1371/journal.pone.0152590
CrossRef Google Scholar
|
[36]
|
Marcotuli I, Gadaleta A, Mangini G, Signorile AM, Zacheo SA, et al. 2017. Development of a high-density SNP-based linkage map and detection of QTL for β-glucans, protein content, grain yield per spike and heading time in durum wheat. International Journal of Molecular Sciences 18:1329 doi: 10.3390/ijms18061329
CrossRef Google Scholar
|
[37]
|
Lombard V, Golaconda Ramulu H, Drula E, Coutinho PM, Henrissat B. 2014. The carbohydrate-active enzymes database (CAZy) in 2013. Nucleic Acids Research 42:D490−D495 doi: 10.1093/nar/gkt1178
CrossRef Google Scholar
|
[38]
|
Manickavelu A, Kawaura K, Imamura H, Mori M, Ogihara Y. 2011. Molecular mapping of quantitative trait loci for domestication traits and β-glucan content in a wheat recombinant inbred line population. Euphytica 177:179−90 doi: 10.1007/s10681-010-0217-9
CrossRef Google Scholar
|
[39]
|
Ivanizs L, Marcotuli I, Rakszegi M, Kalapos B, Szőke-Pázsi K, et al. 2022. Identification of new QTLs for dietary fiber content in Aegilops biuncialis. International Journal of Molecular Sciences 23:3821 doi: 10.3390/ijms23073821
CrossRef Google Scholar
|
[40]
|
Marcotuli I, Colasuonno P, Hsieh YSY, Fincher GB, Gadaleta A. 2020. Non-starch polysaccharides in durum wheat: a review. International Journal of Molecular Sciences 21:2933 doi: 10.3390/ijms21082933
CrossRef Google Scholar
|
[41]
|
Botticella E, Savatin DV, Sestili F. 2021. The triple jags of dietary fibers in cereals: How biotechnology is longing for high fiber grains. Frontiers in Plant Science 12:745579 doi: 10.3389/fpls.2021.745579
CrossRef Google Scholar
|
[42]
|
Nemeth C, Freeman J, Jones HD, Sparks C, Pellny TK, et al. 2010. Down-regulation of the CSLF6 gene results in decreased (1,3;1,4)-β-D-glucan in endosperm of wheat. Plant Physiology 152:1209−18 doi: 10.1104/pp.109.151712
CrossRef Google Scholar
|
[43]
|
Marcotuli I, Colasuonno P, Blanco A, Gadaleta A. 2018. Expression analysis of cellulose synthase-like genes in durum wheat. Scientific Reports 8:15675 doi: 10.1038/s41598-018-34013-6
CrossRef Google Scholar
|
[44]
|
Danilova TV, Poland J, Friebe B. 2019. Production of a complete set of wheat-barley group-7 chromosome recombinants with increased grain β-glucan content. Theoretical and Applied Genetics 132:3129−41 doi: 10.1007/s00122-019-03411-3
CrossRef Google Scholar
|
[45]
|
Burton RA, Jobling SA, Harvey AJ, Shirley NJ, Mather DE, et al. 2008. The genetics and transcriptional profiles of the cellulose synthase-like HvCslF gene family in barley. Plant Physiology 146:1821−33 doi: 10.1104/pp.107.114694
CrossRef Google Scholar
|
[46]
|
Türkösi E, Darko E, Rakszegi M, Molnár I, Molnár-Láng M, et al. 2018. Development of a new 7BS. 7HL winter wheat-winter barley Robertsonian translocation line conferring increased salt tolerance and (1,3;1,4)-β-D-glucan content. PLoS ONE 13:e0206248 doi: 10.1371/journal.pone.0206248
CrossRef Google Scholar
|
[47]
|
Cseh A, Soós V, Rakszegi M, Türkösi E, Balázs E, et al. 2013. Expression of HvCslF9 and HvCslF6 barley genes in the genetic background of wheat and their influence on the wheat β-glucan content. Annals of Applied Biology 163:142−50 doi: 10.1111/aab.12043
CrossRef Google Scholar
|
[48]
|
Marcotuli I, Colasuonno P, Cutillo S, Simeone R, Blanco A, et al. 2019. β-glucan content in a panel of Triticum and Aegilops genotypes. Genetic Resources and Crop Evolution 66:897−907 doi: 10.1007/s10722-019-00753-1
CrossRef Google Scholar
|
[49]
|
Sestili F, Palombieri S, Botticella E, Mantovani P, Bovina R, et al. 2015. TILLING mutants of durum wheat result in a high amylose phenotype and provide information on alternative splicing mechanisms. Plant Science 233:127−33 doi: 10.1016/j.plantsci.2015.01.009
CrossRef Google Scholar
|
[50]
|
Regina A, Berbezy P, Kosar-Hashemi B, Li S, Cmiel M, et al. 2015. A genetic strategy generating wheat with very high amylose content. Plant Biotechnology Journal 13:1276−86 doi: 10.1111/pbi.12345
CrossRef Google Scholar
|
[51]
|
Englyst HN, Kingman SM, Cummings JH. 1992. Classification and measurement of nutritionally important starch fractions. European Journal of Clinical Nutrition 46(Suppl 2):S33−S50
Google Scholar
|
[52]
|
Sajilata MG, Singhal RS, Kulkarni PR. 2006. Resistant starch − A review. Comprehensive Reviews in Food Science and Food Safety 5:1−17 doi: 10.1111/j.1541-4337.2006.tb00076.x
CrossRef Google Scholar
|
[53]
|
Harris KF. 2019. An introductory review of resistant starch type 2 from high-amylose cereal grains and its effect on glucose and insulin homeostasis. Nutrition Reviews 77:748−64 doi: 10.1093/nutrit/nuz040
CrossRef Google Scholar
|
[54]
|
Zeeman SC, Kossmann J, Smith AM. 2010. Starch: its metabolism, evolution, and biotechnological modification in plants. Annual Review of Plant Biology 61:209−34 doi: 10.1146/annurev-arplant-042809-112301
CrossRef Google Scholar
|
[55]
|
Seung D, Smith AM. 2019. Starch granule initiation and morphogenesis—progress in Arabidopsis and cereals. Journal of Experimental Botany 70:771−84 doi: 10.1093/jxb/ery412
CrossRef Google Scholar
|
[56]
|
MacNeill GJ, Mehrpouyan S, Minow MAA, Patterson JA, Tetlow IJ, et al. 2017. Starch as a source, starch as a sink: the bifunctional role of starch in carbon allocation. Journal of Experimental Botany 68:4433−53 doi: 10.1093/jxb/erx291
CrossRef Google Scholar
|
[57]
|
Chen MH, Bergman CJ, McClung AM, Everette JD, Tabien RE. 2017. Resistant starch: Variation among high amylose rice varieties and its relationship with apparent amylose content, pasting properties and cooking methods. Food Chemistry 234:180−89 doi: 10.1016/j.foodchem.2017.04.170
CrossRef Google Scholar
|
[58]
|
Kumar R, Kumar A, Sharma NK, Kaur N, Chunduri V, et al. 2016. Soft and hard textured wheat differ in starch properties as indicated by Trimodal distribution, morphology, thermal and crystalline properties. PLoS ONE 11:e0147622 doi: 10.1371/journal.pone.0147622
CrossRef Google Scholar
|
[59]
|
Ahmed Z, Tetlow IJ, Falk DE, Liu Q, Emes MJ. 2016. Resistant starch content is related to granule size in barley. Cereal Chemistry 93:618−30 doi: 10.1094/CCHEM-02-16-0025-R
CrossRef Google Scholar
|
[60]
|
Sangwongchai W, Tananuwong K, Krusong K, Natee S, Thitisaksakul M. 2023. Starch chemical composition and molecular structure in relation to physicochemical characteristics and resistant starch content of four Thai commercial rice cultivars differing in pasting properties. Polymers 15:574 doi: 10.3390/polym15030574
CrossRef Google Scholar
|
[61]
|
Feng N, He Z, Zhang Y, Xia X, Zhang Y. 2013. QTL mapping of starch granule size in common wheat using recombinant inbred lines derived from a PH82-2/Neixiang 188 cross. The Crop Journal 1:166−71 doi: 10.1016/j.cj.2013.07.003
CrossRef Google Scholar
|
[62]
|
Howard T, Rejab NA, Griffiths S, Leigh F, Leverington-Waite M, et al. 2011. Identification of a major QTL controlling the content of B-type starch granules in Aegilops. Journal of Experimental Botany 62:2217−28 doi: 10.1093/jxb/erq423
CrossRef Google Scholar
|
[63]
|
Chia T, Chirico M, King R, Ramirez-Gonzalez R, Saccomanno B, et al. 2020. A carbohydrate-binding protein, B-GRANULE CONTENT 1, influences starch granule size distribution in a dose-dependent manner in polyploid wheat. Journal of Experimental Botany 71:105−15 doi: 10.1093/jxb/erz405
CrossRef Google Scholar
|
[64]
|
Li C, Dhital S, Gidley MJ. 2022. High-amylose wheat bread with reduced in vitro digestion rate and enhanced resistant starch content. Food Hydrocolloids 123:107181 doi: 10.1016/j.foodhyd.2021.107181
CrossRef Google Scholar
|
[65]
|
Mishra A, Sharma V, Rahim MS, Sonah H, Pal D, et al. 2021. Genotyping-by-sequencing based QTL mapping identified a novel waxy allele contributing to high amylose starch in wheat. Euphytica 217:131 doi: 10.1007/s10681-021-02861-5
CrossRef Google Scholar
|
[66]
|
Sharma V, Jahan K, Kumar P, Puri A, Sharma VK, et al. 2022. Mechanistic insights into granule-bound starch synthase I (GBSSI. L539P) allele in high amylose starch biosynthesis in wheat (Triticum aestivum L. ). Functional and Integrative Genomics 23:20 doi: 10.1007/s10142-022-00923-y
CrossRef Google Scholar
|
[67]
|
Wang L, Li W, Pang H, Yin Y, Yuan H, et al. 2009. Selection and verification of a resistant starch-linked SSR marker in wheat. Journal of Triticeae Crops 29:390−95
Google Scholar
|
[68]
|
Mishra A, Singh A, Sharma M, Kumar P, Roy J. 2016. Development of EMS-induced mutation population for amylose and resistant starch variation in bread wheat (Triticum aestivum) and identification of candidate genes responsible for amylose variation. BMC Plant Biology 16:217 doi: 10.1186/s12870-016-0896-z
CrossRef Google Scholar
|
[69]
|
Irshad A, Guo H, Ur Rehman S, Gu J, Wang C, et al. 2022. Screening of induced mutants led to the identification of starch biosynthetic genes associated with improved resistant starch in wheat. International Journal of Molecular Sciences 23:10741 doi: 10.3390/ijms231810741
CrossRef Google Scholar
|
[70]
|
Hazard B, Zhang X, Naemeh M, Hamilton MK, Rust B, et al. 2015. Mutations in durum wheat SBEII genes affect grain yield components, quality, and fermentation responses in rats. Crop Science 55:2813−25 doi: 10.2135/cropsci2015.03.0179
CrossRef Google Scholar
|
[71]
|
Schönhofen A, Zhang X-q, Dubcovsky J. 2017. Combined mutations in five wheat STARCH BRANCHING ENZYME II genes improve resistant starch but affect grain yield and bread-making quality. Journal of Cereal Science 75:165−74 doi: 10.1016/j.jcs.2017.03.028
CrossRef Google Scholar
|
[72]
|
Fahy B, Gonzalez O, Savva GM, Ahn-Jarvis JH, Warren FJ, et al. 2022. Loss of starch synthase IIIa changes starch molecular structure and granule morphology in grains of hexaploid bread wheat. Scientific Reports 12:10806 doi: 10.1038/s41598-022-14995-0
CrossRef Google Scholar
|
[73]
|
Schoen A, Joshi A, Tiwari V, Gill BS, Rawat N. 2021. Triple null mutations in starch synthase SSIIa gene homoeologs lead to high amylose and resistant starch in hexaploid wheat. BMC Plant Biology 21:74 doi: 10.1186/s12870-020-02822-5
CrossRef Google Scholar
|
[74]
|
Hogg AC, Gause K, Hofer P, Martin JM, Graybosch RA, et al. 2013. Creation of a high-amylose durum wheat through mutagenesis of starch synthase II (SSIIa). Journal of Cereal Science 57:377−83 doi: 10.1016/j.jcs.2013.01.001
CrossRef Google Scholar
|
[75]
|
Hogg AC, Martin JM, Manthey FA, Giroux MJ. 2015. Nutritional and Quality Traits of Pasta Made from SSIIa Null High-Amylose Durum Wheat. Cereal Chemistry 92:395−400 doi: 10.1094/CCHEM-12-14-0246-R
CrossRef Google Scholar
|
[76]
|
Botticella E, Sestili F, Sparla F, Moscatello S, Marri L, et al. 2018. Combining mutations at genes encoding key enzymes involved in starch synthesis affects the amylose content, carbohydrate allocation and hardness in the wheat grain. Plant Biotechnology Journal 16:1723−34 doi: 10.1111/pbi.12908
CrossRef Google Scholar
|
[77]
|
Schönhofen A, Hazard B, Zhang X, Dubcovsky J. 2016. Registration of common wheat germplasm with mutations in SBEII genes conferring increased grain amylose and resistant starch content. Journal of Plant Registrations 10:200−5 doi: 10.3198/jpr2015.10.0066crg
CrossRef Google Scholar
|
[78]
|
Botticella E, Sestili F, Ferrazzano G, Mantovani P, Cammerata A, et al. 2016. The impact of the SSIIa null mutations on grain traits and composition in durum wheat. Breeding Science 66:572−79 doi: 10.1270/jsbbs.16025
CrossRef Google Scholar
|
[79]
|
Regina A, Bird A, Topping D, Bowden S, Freeman J, et al. 2006. High-amylose wheat generated by RNA interference improves indices of large-bowel health in rats. Proceedings of the National Academy of Sciences of the United States of America 103:3546−51 doi: 10.1073/pnas.0510737103
CrossRef Google Scholar
|
[80]
|
Sestili F, Janni M, Doherty A, Botticella E, D’Ovidio R, et al. 2010. Increasing the amylose content of durum wheat through silencing of the SBEIIa genes. BMC Plant Biology 10:144 doi: 10.1186/1471-2229-10-144
CrossRef Google Scholar
|
[81]
|
McMaugh SJ, Thistleton JL, Anschaw E, Luo J, Konik-Rose C, et al. 2014. Suppression of starch synthase I expression affects the granule morphology and granule size and fine structure of starch in wheat endosperm. Journal of Experimental Botany 65:2189−201 doi: 10.1093/jxb/eru095
CrossRef Google Scholar
|
[82]
|
Wang Y, Liu X, Zheng X, Wang W, Yin X, et al. 2021. Creation of aromatic maize by CRISPR/Cas. Journal of Integrative Plant Biology 63:1664−70 doi: 10.1111/jipb.13105
CrossRef Google Scholar
|
[83]
|
Wang W, Wei X, Jiao G, Chen W, Wu Y, et al. 2020. GBSS-BINDING PROTEIN, encoding a CBM48 domain-containing protein, affects rice quality and yield. Journal of Integrative Plant Biology 62:948−66 doi: 10.1111/jipb.12866
CrossRef Google Scholar
|
[84]
|
Huang X, Su F, Huang S, Mei F, Niu X, et al. 2021. Novel Wx alleles generated by base editing for improvement of rice grain quality. Journal of Integrative Plant Biology 63:1632−38 doi: 10.1111/jipb.13098
CrossRef Google Scholar
|
[85]
|
Zhang J, Zhang H, Botella JR, Zhu JK. 2018. Generation of new glutinous rice by CRISPR/Cas9-targeted mutagenesis of the Waxy gene in elite rice varieties. Journal of Integrative Plant Biology 60:369−75 doi: 10.1111/jipb.12620
CrossRef Google Scholar
|
[86]
|
Li J, Jiao G, Sun Y, Chen J, Zhong Y, et al. 2021. Modification of starch composition, structure and properties through editing of TaSBEIIa in both winter and spring wheat varieties by CRISPR/Cas9. Plant Biotechnology Journal 19:937−51 doi: 10.1111/pbi.13519
CrossRef Google Scholar
|
[87]
|
Gómez M, Gutkoski LC, Bravo-Núñez Á. 2020. Understanding whole-wheat flour and its effect in breads: A review. Comprehensive Reviews in Food Science and Food Safety 19:3241−65 doi: 10.1111/1541-4337.12625
CrossRef Google Scholar
|
[88]
|
Li DQ, Wu XB, Wang HF, Feng X, Yan SJ, et al. 2021. Defective mitochondrial function by mutation in THICK ALEURONE 1 encoding a mitochondrion-targeted single-stranded DNA-binding protein leads to increased aleurone cell layers and improved nutrition in rice. Molecular Plant 14:1343−61 doi: 10.1016/j.molp.2021.05.016
CrossRef Google Scholar
|
[89]
|
Liu J, Wu X, Yao X, Yu R, Larkin PJ, et al. 2018. Mutations in the DNA demethylase OsROS1 result in a thickened aleurone and improved nutritional value in rice grains. Proceedings of the National Academy of Sciences 115:11327−32 doi: 10.1073/pnas.1806304115
CrossRef Google Scholar
|
[90]
|
Chen Q, Yang C, Zhang Z, Wang Z, Chen Y, et al. 2022. Unprocessed wheat γ-gliadin reduces gluten accumulation associated with the endoplasmic reticulum stress and elevated cell death. New Phytologist 236:146−64 doi: 10.1111/nph.18316
CrossRef Google Scholar
|
[91]
|
Huang L, Li Q, Zhang C, Chu R, Gu Z, et al. 2020. Creating novel Wx alleles with fine-tuned amylose levels and improved grain quality in rice by promoter editing using CRISPR/Cas9 system. Plant Biotechnology Journal 18:2164−66 doi: 10.1111/pbi.13391
CrossRef Google Scholar
|
[92]
|
Xu Y, Lin Q, Li X, Wang F, Chen Z, et al. 2021. Fine-tuning the amylose content of rice by precise base editing of the Wx gene. Plant Biotechnology Journal 19:11−13 doi: 10.1111/pbi.13433
CrossRef Google Scholar
|
[93]
|
Huang L, Gu Z, Chen Z, Yu J, Chu R, et al. 2021. Improving rice eating and cooking quality by coordinated expression of the major starch synthesis-related genes, SSII and Wx, in endosperm. Plant Molecular Biology 106:419−32 doi: 10.1007/s11103-021-01162-8
CrossRef Google Scholar
|
[94]
|
Song X, Meng X, Guo H, Cheng Q, Jing Y, et al. 2022. Targeting a gene regulatory element enhances rice grain yield by decoupling panicle number and size. Nature Biotechnology 40:1403−11 doi: 10.1038/s41587-022-01281-7
CrossRef Google Scholar
|
[95]
|
Liu L, Gallagher J, Arevalo ED, Chen R, Skopelitis T, et al. 2021. Enhancing grain-yield-related traits by CRISPR–Cas9 promoter editing of maize CLE genes. Nature Plants 7:287−94 doi: 10.1038/s41477-021-00858-5
CrossRef Google Scholar
|
[96]
|
Ghoshal B, Picard CL, Vong B, Feng S, Jacobsen SE. 2021. CRISPR-based targeting of DNA methylation in Arabidopsis thaliana by a bacterial CG-specific DNA methyltransferase. Proceedings of the National Academy of Sciences of the United States of America 118:e2125016118 doi: 10.1073/pnas.2125016118
CrossRef Google Scholar
|