[1] |
Jia H, Chai Y, Li C, Lu D, Luo J, et al. 2011. Abscisic acid plays an important role in the regulation of strawberry fruit ripening. Plant Physiology 157:188−99 doi: 10.1104/pp.111.177311 |
[2] |
Symons GM, Chua YJ, Ross JJ, Quittenden LJ, Davies NW, et al. 2012. Hormonal changes during non-climacteric ripening in strawberry. Journal of Experimental Botany 63:4741−50 doi: 10.1093/jxb/ers147 |
[3] |
Kang C, Darwish O, Geretz A, Shahan R, Alkharouf N, et al. 2013. Genome-scale transcriptomic insights into early-stage fruit development in woodland strawberry Fragaria vesca. The Plant Cell 25:1960−78 doi: 10.1105/tpc.113.111732 |
[4] |
Liao X, Li M, Liu B, Yan M, Yu X, et al. 2018. Interlinked regulatory loops of ABA catabolism and biosynthesis coordinate fruit growth and ripening in woodland strawberry. Proceedings of the National Academy of Sciences of the United States of America 115:E11542−E11550 doi: 10.1073/pnas.1812575115 |
[5] |
Gu T, Jia S, Huang X, Wang L, Fu W, et al. 2019. Transcriptome and hormone analyses provide insights into hormonal regulation in strawberry ripening. Planta 250:145−62 doi: 10.1007/s00425-019-03155-w |
[6] |
Guo L, Luo X, Li M, Joldersma D, Plunkert M, et al. 2022. Mechanism of fertilization-induced auxin synthesis in the endosperm for seed and fruit development. Nature Communications 13:3985 doi: 10.1038/s41467-022-31656-y |
[7] |
Paul V, Pandey R, Srivastava GC. 2012. The fading distinctions between classical patterns of ripening in climacteric and non-climacteric fruit and the ubiquity of ethylene-an overview. Journal of Food Science and Technology 49:1−21 doi: 10.1007/s13197-011-0293-4 |
[8] |
Hollender CA, Geretz AC, Slovin JP, Liu ZC. 2012. Flower and early fruit development in a diploid strawberry, Fragaria vesca. Planta 235:1123−39 doi: 10.1007/s00425-011-1562-1 |
[9] |
Boller T, Kende H. 1980. Regulation of wound ethylene synthesis in plants. Nature 286:259−60 doi: 10.1038/286259a0 |
[10] |
Nieuwenhuizen NJ, Chen X, Pellan M, Zhang L, Guo L, et al. 2021. Regulation of wound ethylene biosynthesis by NAC transcription factors in kiwifruit. BMC Plant Biology 21:411 doi: 10.1186/s12870-021-03154-8 |
[11] |
Perkins-Veazie PM, Huber DJ, Brecht JK. 1995. Characterization of ethylene production in developing strawberry fruit. Journal of Plant Growth Regulation 17:33−39 doi: 10.1007/BF00024492 |
[12] |
Sun J, Luo J, Tian L, Li C, Xing Y, et al. 2013. New evidence for the role of ethylene in strawberry fruit ripening. Journal of Plant Growth Regulation 32:461−70 doi: 10.1007/s00344-012-9312-6 |
[13] |
Banita S. 2014. Spectroscopic assessment of ethylene hormone production at strawberry fruits. University Politehnica of Bucharest Scientific Bulletin, Series A: Applied Mathematics and Physics 76:219−24 |
[14] |
Ireland HS, Yao JL, Tomes S, Sutherland PW, Nieuwenhuizen N, et al. 2013. Apple SEPALLATA1/2-like genes control fruit flesh development and ripening. The Plant Journal 73:1044−56 doi: 10.1111/tpj.12094 |
[15] |
Li N, Huang B, Tang N, Jian W, Zou J, et al. 2017. The MADS-box gene SlMBP21 regulates sepal size mediated by ethylene and auxin in tomato. Plant and Cell Physiology 58:2241−56 doi: 10.1093/pcp/pcx158 |
[16] |
Yao J, Kang C, Gu C, Andrew PG. 2022. The roles of floral organ genes in regulating Rosaceae fruit development. Frontiers in Plant Science 12:644424 doi: 10.3389/fpls.2021.644424 |
[17] |
Merchante C, Vallarino JG, Osorio S, Aragüez I, Villarreal N, et al. 2013. Ethylene is involved in strawberry fruit ripening in an organ-specific manner. Journal of Experimental Botany 64:4421−39 doi: 10.1093/jxb/ert257 |
[18] |
Cristescu SM, Mandon J, Arslanov D, De Pessemier J, Hermans C, et al. 2013. Current methods for detecting ethylene in plants. Annals of Botany 111:347−60 doi: 10.1093/aob/mcs259 |
[19] |
Fernandez-Moreno JP, Stepanova AN. 2020. Monitoring ethylene in plants: genetically encoded reporters and biosensors. Small Methods 4:1900260 doi: 10.1002/smtd.201900260 |
[20] |
Vong K, Eda S, Kadota Y, Nasibullin I, Wakatake T, et al. 2019. An artificial metalloenzyme biosensor can detect ethylene gas in fruits and Arabidopsis leaves. Nature Communications 10:5746 doi: 10.1038/s41467-019-13758-2 |
[21] |
Stepanova AN, Hoyt JM, Hamilton AA, Alonso JM. 2005. A Link between ethylene and auxin uncovered by the characterization of two root-specific ethylene-insensitive mutants in Arabidopsis. The Plant Cell 17:2230−42 doi: 10.1105/tpc.105.033365 |