[1]
|
Jia H, Chai Y, Li C, Lu D, Luo J, et al. 2011. Abscisic acid plays an important role in the regulation of strawberry fruit ripening. Plant Physiology 157:188−99 doi: 10.1104/pp.111.177311
CrossRef Google Scholar
|
[2]
|
Symons GM, Chua YJ, Ross JJ, Quittenden LJ, Davies NW, et al. 2012. Hormonal changes during non-climacteric ripening in strawberry. Journal of Experimental Botany 63:4741−50 doi: 10.1093/jxb/ers147
CrossRef Google Scholar
|
[3]
|
Kang C, Darwish O, Geretz A, Shahan R, Alkharouf N, et al. 2013. Genome-scale transcriptomic insights into early-stage fruit development in woodland strawberry Fragaria vesca. The Plant Cell 25:1960−78 doi: 10.1105/tpc.113.111732
CrossRef Google Scholar
|
[4]
|
Liao X, Li M, Liu B, Yan M, Yu X, et al. 2018. Interlinked regulatory loops of ABA catabolism and biosynthesis coordinate fruit growth and ripening in woodland strawberry. Proceedings of the National Academy of Sciences of the United States of America 115:E11542−E11550 doi: 10.1073/pnas.1812575115
CrossRef Google Scholar
|
[5]
|
Gu T, Jia S, Huang X, Wang L, Fu W, et al. 2019. Transcriptome and hormone analyses provide insights into hormonal regulation in strawberry ripening. Planta 250:145−62 doi: 10.1007/s00425-019-03155-w
CrossRef Google Scholar
|
[6]
|
Guo L, Luo X, Li M, Joldersma D, Plunkert M, et al. 2022. Mechanism of fertilization-induced auxin synthesis in the endosperm for seed and fruit development. Nature Communications 13:3985 doi: 10.1038/s41467-022-31656-y
CrossRef Google Scholar
|
[7]
|
Paul V, Pandey R, Srivastava GC. 2012. The fading distinctions between classical patterns of ripening in climacteric and non-climacteric fruit and the ubiquity of ethylene-an overview. Journal of Food Science and Technology 49:1−21 doi: 10.1007/s13197-011-0293-4
CrossRef Google Scholar
|
[8]
|
Hollender CA, Geretz AC, Slovin JP, Liu ZC. 2012. Flower and early fruit development in a diploid strawberry, Fragaria vesca. Planta 235:1123−39 doi: 10.1007/s00425-011-1562-1
CrossRef Google Scholar
|
[9]
|
Boller T, Kende H. 1980. Regulation of wound ethylene synthesis in plants. Nature 286:259−60 doi: 10.1038/286259a0
CrossRef Google Scholar
|
[10]
|
Nieuwenhuizen NJ, Chen X, Pellan M, Zhang L, Guo L, et al. 2021. Regulation of wound ethylene biosynthesis by NAC transcription factors in kiwifruit. BMC Plant Biology 21:411 doi: 10.1186/s12870-021-03154-8
CrossRef Google Scholar
|
[11]
|
Perkins-Veazie PM, Huber DJ, Brecht JK. 1995. Characterization of ethylene production in developing strawberry fruit. Journal of Plant Growth Regulation 17:33−39 doi: 10.1007/BF00024492
CrossRef Google Scholar
|
[12]
|
Sun J, Luo J, Tian L, Li C, Xing Y, et al. 2013. New evidence for the role of ethylene in strawberry fruit ripening. Journal of Plant Growth Regulation 32:461−70 doi: 10.1007/s00344-012-9312-6
CrossRef Google Scholar
|
[13]
|
Banita S. 2014. Spectroscopic assessment of ethylene hormone production at strawberry fruits. University Politehnica of Bucharest Scientific Bulletin, Series A: Applied Mathematics and Physics 76:219−24
Google Scholar
|
[14]
|
Ireland HS, Yao JL, Tomes S, Sutherland PW, Nieuwenhuizen N, et al. 2013. Apple SEPALLATA1/2-like genes control fruit flesh development and ripening. The Plant Journal 73:1044−56 doi: 10.1111/tpj.12094
CrossRef Google Scholar
|
[15]
|
Li N, Huang B, Tang N, Jian W, Zou J, et al. 2017. The MADS-box gene SlMBP21 regulates sepal size mediated by ethylene and auxin in tomato. Plant and Cell Physiology 58:2241−56 doi: 10.1093/pcp/pcx158
CrossRef Google Scholar
|
[16]
|
Yao J, Kang C, Gu C, Andrew PG. 2022. The roles of floral organ genes in regulating Rosaceae fruit development. Frontiers in Plant Science 12:644424 doi: 10.3389/fpls.2021.644424
CrossRef Google Scholar
|
[17]
|
Merchante C, Vallarino JG, Osorio S, Aragüez I, Villarreal N, et al. 2013. Ethylene is involved in strawberry fruit ripening in an organ-specific manner. Journal of Experimental Botany 64:4421−39 doi: 10.1093/jxb/ert257
CrossRef Google Scholar
|
[18]
|
Cristescu SM, Mandon J, Arslanov D, De Pessemier J, Hermans C, et al. 2013. Current methods for detecting ethylene in plants. Annals of Botany 111:347−60 doi: 10.1093/aob/mcs259
CrossRef Google Scholar
|
[19]
|
Fernandez-Moreno JP, Stepanova AN. 2020. Monitoring ethylene in plants: genetically encoded reporters and biosensors. Small Methods 4:1900260 doi: 10.1002/smtd.201900260
CrossRef Google Scholar
|
[20]
|
Vong K, Eda S, Kadota Y, Nasibullin I, Wakatake T, et al. 2019. An artificial metalloenzyme biosensor can detect ethylene gas in fruits and Arabidopsis leaves. Nature Communications 10:5746 doi: 10.1038/s41467-019-13758-2
CrossRef Google Scholar
|
[21]
|
Stepanova AN, Hoyt JM, Hamilton AA, Alonso JM. 2005. A Link between ethylene and auxin uncovered by the characterization of two root-specific ethylene-insensitive mutants in Arabidopsis. The Plant Cell 17:2230−42 doi: 10.1105/tpc.105.033365
CrossRef Google Scholar
|