[1]
|
Stephenson AG. 1981. Flower and fruit abortion: proximate causes and ultimate functions. Annual Review of Ecology and Systematics 12:253−79 doi: 10.1146/annurev.es.12.110181.001345
CrossRef Google Scholar
|
[2]
|
Tadeo FR, Cercós M, Colmenero-Flores JM, Iglesias DJ, Talon MA, et al. 2008. Molecular physiology of development and quality of citrus. Advances in Botanical Research 47:147−223 doi: 10.1016/S0065-2296(08)00004-9
CrossRef Google Scholar
|
[3]
|
Stern RA, Kigel J, Tomer E, Gazit S. 1995. 'Mauritius' lychee fruit development and reduced abscission after treatment with the auxin 2,4,5-TP. Journal of the American Society for Horticultural Science 120:65−70 doi: 10.21273/JASHS.120.1.65
CrossRef Google Scholar
|
[4]
|
Mitra SK, Pereira LS, Pathak PK, Majumdar D. 2005. Fruit abscission pattern of lychee cultivars. Acta Horticulturae 665:215−18 doi: 10.17660/ActaHortic.2005.665.24
CrossRef Google Scholar
|
[5]
|
Zhao M, Li J. 2020. Molecular events involved in fruitlet abscission in litchi. Plants 9:151 doi: 10.3390/plants9020151
CrossRef Google Scholar
|
[6]
|
Lordan J, Reginato GH, Lakso AN, Francescatto P, Robinson TL. 2019. Natural fruitlet abscission as related to apple tree carbon balance estimated with the MaluSim model. Scientia Horticulturae 247:296−309 doi: 10.1016/j.scienta.2018.11.049
CrossRef Google Scholar
|
[7]
|
Anthony MF, Coggins CW Jr. 1999. The efficacy of five forms of 2,4-D in controlling preharvest fruit drop in citrus. Scientia Horticulturae 81:267−77 doi: 10.1016/S0304-4238(99)00015-1
CrossRef Google Scholar
|
[8]
|
Stover E, Fargione MJ, Watkins CB, Lungerman KA. 2003. Harvest management of marshall 'mcintosh' apples: effects of AVG, NAA, ethephon, and summer pruning on preharvest drop and fruit quality. HortScience 38:1093−99 doi: 10.21273/HORTSCI.38.6.1093
CrossRef Google Scholar
|
[9]
|
Arseneault MH, Cline JA. 2016. A review of apple preharvest fruit drop and practices for horticultural management. Scientia Horticulturae 211:40−52 doi: 10.1016/j.scienta.2016.08.002
CrossRef Google Scholar
|
[10]
|
Sdiri S, Navarro P, Salvador A. 2013. Postharvest application of a new growth regulator reduces calyx alterations of citrus fruit induced by degreening treatment. Postharvest Biology and Technology 75:68−74 doi: 10.1016/j.postharvbio.2012.08.004
CrossRef Google Scholar
|
[11]
|
Ma C, Jiang CZ, Gao J. 2021. Regulatory mechanisms underlying activation of organ abscission. Annual Plant Reviews Online 4:27−56 doi: 10.1002/9781119312994.apr0741
CrossRef Google Scholar
|
[12]
|
Xie R, Ge T, Zhang J, Pan X, Ma Y, et al. 2018. The molecular events of IAA inhibiting citrus fruitlet abscission revealed by digital gene expression profiling. Plant Physiology and Biochemistry 130:192−204 doi: 10.1016/j.plaphy.2018.07.006
CrossRef Google Scholar
|
[13]
|
Merelo P, Agusti J, Arbona V, Costa ML, Estornell LH, et al. 2017. Cell wall remodeling in abscission zone cells during ethylene-promoted fruit abscission in citrus. Frontiers in Plant Science 8:126 doi: 10.3389/fpls.2017.00126
CrossRef Google Scholar
|
[14]
|
Zhao M, Li C, Ma X, Xia R, Chen J, et al. 2020. KNOX protein KNAT1 regulates fruitlet abscission in litchi by repressing ethylene biosynthetic genes. Journal of Experimental Botany 71:4069−82 doi: 10.1093/jxb/eraa162
CrossRef Google Scholar
|
[15]
|
Tranbarger TJ, Tadeo FR. 2020. Diversity and functional dynamics of fleshy fruit abscission zones. Annual Plant Reviews Online 3:151−214 doi: 10.1002/9781119312994.apr0652
CrossRef Google Scholar
|
[16]
|
Patterson SE. 2001. Cutting loose. Abscission and dehiscence in Arabidopsis. . Plant Physiology 126:494−500 doi: 10.1104/pp.126.2.494
CrossRef Google Scholar
|
[17]
|
McKim SM, Stenvik GE, Butenko MA, Kristiansen W, Cho SK, et al. 2008. The BLADE-ON-PETIOLE genes are essential for abscission zone formation in Arabidopsis. Development 135:1537−46 doi: 10.1242/dev.012807
CrossRef Google Scholar
|
[18]
|
Mao L, Begum D, Chuang HW, Budiman MA, Szymkowiak EJ, et al. 2000. JOINTLESS is a MADS-box gene controlling tomato flower abscission zone development. Nature 406:910−13 doi: 10.1038/35022611
CrossRef Google Scholar
|
[19]
|
Nakano T, Kimbara J, Fujisawa M, Kitagawa M, Ihashi N, et al. 2012. MACROCALYX and JOINTLESS interact in the transcriptional regulation of tomato fruit abscission zone development. Plant Physiology 158:439−50 doi: 10.1104/pp.111.183731
CrossRef Google Scholar
|
[20]
|
Liu D, Wang D, Qin Z, Zhang D, Yin L, et al. 2014. The SEPALLATA MADS-box protein SLMBP21 forms protein complexes with JOINTLESS and MACROCALYX as a transcription activator for development of the tomato flower abscission zone. The Plant Journal 77:284−96 doi: 10.1111/tpj.12387
CrossRef Google Scholar
|
[21]
|
Li C, Zhou A, Sang T. 2006. Rice domestication by reducing shattering. Science 311:1936−39 doi: 10.1126/science.1123604
CrossRef Google Scholar
|
[22]
|
Konishi S, Izawa T, Lin SY, Ebana K, Fukuta Y, et al. 2006. An SNP caused loss of seed shattering during rice domestication. Science 312:1392−96 doi: 10.1126/science.1126410
CrossRef Google Scholar
|
[23]
|
Zhou Y, Lu D, Li C, Luo J, Zhu BF, et al. 2012. Genetic control of seed shattering in rice by the APETALA2 transcription factor SHATTERING ABORTION1. The Plant Cell 24:1034−48 doi: 10.1105/tpc.111.094383
CrossRef Google Scholar
|
[24]
|
Jiang L, Ma X, Zhao S, Tang Y, Liu F, et al. 2019. The APETALA2-like transcription factor SUPERNUMERARY BRACT controls rice seed shattering and seed size. The Plant Cell 31:17−36 doi: 10.1105/tpc.18.00304
CrossRef Google Scholar
|
[25]
|
Nakano T, Kato H, Shima Y, Ito Y. 2015. Apple SVP family MADS-Box proteins and the tomato pedicel abscission zone regulator JOINTLESS have similar molecular activities. Plant and Cell Physiology 56:1097−106 doi: 10.1093/pcp/pcv034
CrossRef Google Scholar
|
[26]
|
Qi X, Hu S, Zhou H, Liu X, Wang L, et al. 2018. A MADS-box transcription factor of 'Kuerlexiangli' (Pyrus sinkiangensis Yu) PsJOINTLESS gene functions in floral organ abscission. Gene 642:163−71 doi: 10.1016/j.gene.2017.11.018
CrossRef Google Scholar
|
[27]
|
Giulia E, Alessandro B, Mariano D, Andrea B, Benedetto R, et al. 2013. Early induction of apple fruitlet abscission is characterized by an increase of both isoprene emission and abscisic acid content. Plant Physiology 161:1952−69 doi: 10.1104/pp.112.208470
CrossRef Google Scholar
|
[28]
|
Botton A, Eccher G, Forcato C, Ferrarini A, Begheldo M, et al. 2011. Signaling pathways mediating the induction of apple fruitlet abscission. Plant Physiology 155:185−208 doi: 10.1104/pp.110.165779
CrossRef Google Scholar
|
[29]
|
Eccher G, Begheldo M, Boschetti A, Ruperti B, Botton A. 2015. Roles of ethylene production and ethylene receptor expression in regulating apple fruitlet abscission. Plant Physiology 169:125−37 doi: 10.1104/pp.15.00358
CrossRef Google Scholar
|
[30]
|
Botton A, Ruperti B. 2019. The yes and no of the ethylene involvement in abscission. Plants 8:187 doi: 10.3390/plants8060187
CrossRef Google Scholar
|
[31]
|
Dal Cin V, Danesin M, Boschetti A, Dorigoni A, Ramina A. 2005. Ethylene biosynthesis and perception in apple fruitlet abscission (Malus domestica L. Borck). Journal of Experimental Botany 56:2995−3005 doi: 10.1093/jxb/eri296
CrossRef Google Scholar
|
[32]
|
Li J, Yuan R. 2008. NAA and ethylene regulate expression of genes related to ethylene biosynthesis, perception, and cell wall degradation during fruit abscission and ripening in 'Delicious' apples. Journal of Plant Growth Regulation 27:283−95 doi: 10.1007/s00344-008-9055-6
CrossRef Google Scholar
|
[33]
|
Li C, Wang Y, Huang X, Li J, Wang H, et al. 2015. An improved fruit transcriptome and the identification of the candidate genes involved in fruit abscission induced by carbohydrate stress in litchi. Frontiers in Plant Science 6:439 doi: 10.3389/fpls.2015.00439
CrossRef Google Scholar
|
[34]
|
Cho SK, Larue CT, Chevalier D, Wang H, Jinn TL, et al. 2008. Regulation of floral organ abscission in Arabidopsis thaliana. Proceedings of the National Academy of Sciences of the United States of America 105:15629−34 doi: 10.1073/pnas.0805539105
CrossRef Google Scholar
|
[35]
|
Bangerth F. 1989. Dominance among fruits/sinks and the search for a correlative signal. Physiologia Plantarum 76:608−14 doi: 10.1111/j.1399-3054.1989.tb05487.x
CrossRef Google Scholar
|
[36]
|
Bangerth F. 2000. Abscission and thinning of young fruit and their regulation by plant hormones and bioregulators. Plant Growth Regulation 31:43−59 doi: 10.1023/A:1006398513703
CrossRef Google Scholar
|
[37]
|
Gruber J, Bangerth F. 1990. Diffusible IAA and dominance phenomena in fruits of apple and tomato. Physiologia Plantarum 79:354−58 doi: 10.1111/j.1399-3054.1990.tb06753.x
CrossRef Google Scholar
|
[38]
|
Larson JE, Kon TM, Malladi A. 2022. Apple fruitlet abscission mechanisms. In Horticultural Reviews, first edition, ed. Warrington I. Volume 49. pp. 243−74. https://doi.org/10.1002/9781119851981.ch5
|
[39]
|
Davenport TL, Manners MM. 1982. Nucellar senescence and ethylene production as they relate to avocado fruitlet abscission. Journal of Experimental Botany 33:815−25 doi: 10.1093/jxb/33.4.815
CrossRef Google Scholar
|
[40]
|
Garner LC, Lovatt CJ. 2016. Physiological factors affecting flower and fruit abscission of 'Hass' avocado. Scientia Horticulturae 199:32−40 doi: 10.1016/j.scienta.2015.12.009
CrossRef Google Scholar
|
[41]
|
Hagemann MH, Winterhagen P, Hegele M, Wuensche JN. 2015. Ethephon induced abscission in mango: physiological fruitlet responses. Frontiers in Plant Science 6:706 doi: 10.3389/fpls.2015.00706
CrossRef Google Scholar
|
[42]
|
Parra-Lobato MC, Gomez-Jimenez MC. 2011. Polyamine-induced modulation of genes involved in ethylene biosynthesis and signalling pathways and nitric oxide production during olive mature fruit abscission. Journal of Experimental Botany 62:4447−65 doi: 10.1093/jxb/err124
CrossRef Google Scholar
|
[43]
|
Ruperti B, Bonghi C, Tonutti P, Ramina A. 1998. Ethylene biosynthesis in peach fruitlet abscission. Plant, Cell & Environment 21:731−37 doi: 10.1046/j.1365-3040.1998.00305.x
CrossRef Google Scholar
|
[44]
|
Einhorn TC, Arrington M. 2018. ABA and shading induce 'Bartlett' pear abscission and iInhibit photosynthesis but are not additive. Journal of Plant Growth Regulation 37:300−08 doi: 10.1007/s00344-017-9729-z
CrossRef Google Scholar
|
[45]
|
Nakano R, Ogura E, Kubo Y, Inaba A. 2003. Ethylene biosynthesis in detached young persimmon fruit is initiated in calyx and modulated by water loss from the fruit. Plant Physiology 131:276−86 doi: 10.1104/pp.010462
CrossRef Google Scholar
|
[46]
|
Gómez-Cadenas A, Mehouachi J, Tadeo FR, Primo-Millo E, Talon M. 2000. Hormonal regulation of fruitlet abscission induced by carbohydrate shortage in citrus. Planta 210:636−43 doi: 10.1007/s004250050054
CrossRef Google Scholar
|
[47]
|
Iglesias DJ, Tadeo FR, Primo-Millo E, Talon M. 2006. Carbohydrate and ethylene levels related to fruitlet drop through abscission zone A in citrus. Trees 20:348−55 doi: 10.1007/s00468-005-0047-x
CrossRef Google Scholar
|
[48]
|
Ma X, Li C, Huang X, Wang H, Wu H, et al. 2019. Involvement of HD-ZIP I transcription factors LcHB2 and LcHB3 in fruitlet abscission by promoting transcription of genes related to the biosynthesis of ethylene and aba in litchi. Tree Physiology 39:1600−13 doi: 10.1093/treephys/tpz071
CrossRef Google Scholar
|
[49]
|
Goldschmidt EE. 1999. Carbohydrate supply as a critical factor for citrus fruit development and productivity. HortScience 34:1020−24 doi: 10.21273/HORTSCI.34.6.1020
CrossRef Google Scholar
|
[50]
|
Mesejo C, Martínez-Fuentes A, Reig C, Agustí M. 2022. Ringing branches reduces fruitlet abscission by promoting PIN1 expression in 'Orri' mandarin. Scientia Horticulturae 306:111451 doi: 10.1016/j.scienta.2022.111451
CrossRef Google Scholar
|
[51]
|
Yuan R, Huang H. 1988. Litchi fruit abscission: its patterns, effect of shading and relation to endogenous abscisic acid. Scientia Horticulturae 36:281−92 doi: 10.1016/0304-4238(88)90063-5
CrossRef Google Scholar
|
[52]
|
Yuan R, Huang H. 1993. Regulation of root and shoot growth and fruit-dorp of young litchi trees by trunk girdling in view of source-sink relationships. Journal of Fruit Science 10:195−98 doi: 10.13925/j.cnki.gsxb.1993.04.002
CrossRef Google Scholar
|
[53]
|
Kuang J, Wu J, Zhong H, Li C, Chen J, et al. 2012. Carbohydrate stress affecting fruitlet abscission and expression of genes related to auxin signal transduction pathway in litchi. International Journal of Molecular Sciences 13:16084−103 doi: 10.3390/ijms131216084
CrossRef Google Scholar
|
[54]
|
Yang Z, Zhong X, Wang H, Zhang L, Li J, et al. 2022. Starving longan fruit sends weakened abscission-suppressing signal rather than enhanced abscission-triggering signal to the abscission zone. Scientia Horticulturae 293:110667 doi: 10.1016/j.scienta.2021.110667
CrossRef Google Scholar
|
[55]
|
Butenko MA, Patterson SE, Grini PE, Stenvik GE, Amundsen SS, et al. 2003. INFLORESCENCE DEFICIENT IN ABSCISSION controls floral organ abscission in Arabidopsis and identifies a novel family of putative ligands in plants. The Plant Cell 15:2296−307 doi: 10.1105/tpc.014365
CrossRef Google Scholar
|
[56]
|
Stenvik GE, Butenko MA, Urbanowicz BR, Rose JK, Aalen RB. 2006. Overexpression of INFLORESCENCE DEFICIENT IN ABSCISSION activates cell separation in vestigial abscission zones in Arabidopsis. The Plant Cell 18:1467−76 doi: 10.1105/tpc.106.042036
CrossRef Google Scholar
|
[57]
|
Jinn TL, Stone JM, Walker JC. 2000. HAESA, an Arabidopsis leucine-rich repeat receptor kinase, controls floral organ abscission. Genes & Development 14:108−17
Google Scholar
|
[58]
|
Wu J, Liu H, Ren S, Li P, Li X, et al. 2022. Generating an oilseed rape mutant with non-abscising floral organs using crispr/cas9 technology. Plant Physiology 190:1562−65 doi: 10.1093/plphys/kiac364
CrossRef Google Scholar
|
[59]
|
Butenko MA, Wildhagen M, Albert M, Jehle A, Kalbacher H, et al. 2014. Tools and strategies to match peptide-ligand receptor pairs. The Plant Cell 26:1838−47 doi: 10.1105/tpc.113.120071
CrossRef Google Scholar
|
[60]
|
Patharkar OR, Walker JC. 2015. Floral organ abscission is regulated by a positive feedback loop. Proceedings of the National Academy of Sciences of the United States of America 112:2906−11 doi: 10.1073/pnas.142359511
CrossRef Google Scholar
|
[61]
|
Shi CL, Stenvik GE, Vie AK, Bones AM, Pautot V, et al. 2011. Arabidopsis class I KNOTTED-like homeobox proteins act downstream in the IDA-HAE/HSL2 floral abscission signaling pathway. The Plant Cell 23:2553−67 doi: 10.1105/tpc.111.084608
CrossRef Google Scholar
|
[62]
|
Niederhuth CE, Cho SK, Seitz K, Walker JC. 2013. Letting go is never easy: abscission and receptor-like protein kinases. Journal of Integrative Plant Biology 55:1251−63 doi: 10.1111/jipb.12116
CrossRef Google Scholar
|
[63]
|
Meng X, Zhou J, Tang J, Li B, de Oliveira MVV, et al. 2016. Ligand-induced receptor-like kinase complex regulates floral organ abscission in Arabidopsis. Cell Reports 14:1330−38 doi: 10.1016/j.celrep.2016.01.023
CrossRef Google Scholar
|
[64]
|
Patharkar OR, Walker JC. 2018. Advances in abscission signaling. Journal of Experimental Botany 69:733−40 doi: 10.1093/jxb/erx256
CrossRef Google Scholar
|
[65]
|
Tucker ML, Yang R. 2012. IDA-like gene expression in soybean and tomato leaf abscission and requirement for a diffusible stelar abscission signal. AoB Plants 2012:pls035 doi: 10.1093/aobpla/pls035
CrossRef Google Scholar
|
[66]
|
Li R, Shi CL, Wang X, Meng Y, Cheng L, et al. 2021. Inflorescence abscission protein SlIDL6 promotes low light intensity-induced tomato flower abscission. Plant Physiology 186:1288−301 doi: 10.1093/plphys/kiab121
CrossRef Google Scholar
|
[67]
|
Lu L, Arif S, Yu JM, Lee JW, Park YH, et al. 2023. Involvement of IDA-HAE module in natural development of tomato flower abscission. Plants 12:185 doi: 10.3390/plants12010185
CrossRef Google Scholar
|
[68]
|
Liu C, Zhang C, Fan M, Ma W, Chen M, et al. 2018. GmIDL2a and GmIDL4a, encoding the inflorescence deficient in abscission-like protein, are involved in soybean cell wall degradation during lateral root emergence. International Journal of Molecular Sciences 19:2262 doi: 10.3390/ijms19082262
CrossRef Google Scholar
|
[69]
|
Wilmowicz E, Kućko A, Ostrowski M, Panek K. 2018. INFLORESCENCE DEFICIENT IN ABSCISSION-like is an abscission-associated and phytohormone-regulated gene in flower separation of Lupinus luteus. Plant Growth Regulation 85:91−100 doi: 10.1007/s10725-018-0375-7
CrossRef Google Scholar
|
[70]
|
Wilmowicz E, Kućko A, Pokora W, Kapusta M, Jasieniecka-Gazarkiewicz K, et al. 2021. EPIP-evoked modifications of redox, lipid, and pectin homeostasis in the abscission zone of lupine flowers. International Journal of Molecular Sciences 22:3001 doi: 10.3390/ijms22063001
CrossRef Google Scholar
|
[71]
|
Singh P, Maurya SK, Singh D, Sane AP. 2023. The rose INFLORESCENCE DEFICIENT IN ABSCISSION-LIKE genes, RbIDL1 and RbIDL4, regulate abscission in an ethylene-responsive manner. Plant Cell Reports 42:1147−61 doi: 10.1007/s00299-023-03017-6
CrossRef Google Scholar
|
[72]
|
Stø IM, Orr RJS, Fooyontphanich K, Jin X, Knutsen JMB, et al. 2015. Conservation of the abscission signaling peptide IDA during angiosperm evolution: withstanding genome duplications and gain and loss of the receptors HAE/HSL2. Frontiers in Plant Science 6:931 doi: 10.3389/fpls.2015.00931
CrossRef Google Scholar
|
[73]
|
Estornell LH, Wildhagen M, Pérez-Amador MA, Talón M, Tadeo FR, et al. 2015. The IDA peptide controls abscission in Arabidopsis and Citrus. Frontiers in Plant Science 6:1003 doi: 10.3389/fpls.2015.01003
CrossRef Google Scholar
|
[74]
|
Ying P, Li C, Liu X, Xia R, Zhao M, et al. 2016. Identification and molecular characterization of an IDA-like gene from litchi, LcIDL1, whose ectopic expression promotes floral organ abscission in Arabidopsis. Scientific Reports 6:37135 doi: 10.1038/srep37135
CrossRef Google Scholar
|
[75]
|
Wang F, Zheng Z, Yuan Y, Li J, Zhao M. 2019. Identification and characterization of HAESA-like genes involved in the fruitlet abscission in litchi. International Journal of Molecular Sciences 20:5945 doi: 10.3390/ijms20235945
CrossRef Google Scholar
|
[76]
|
Stenvik GE, Tandstad NM, Guo Y, Shi CL, Kristiansen W, et al. 2008. The EPIP peptide of INFLORESCENCE DEFICIENT IN ABSCISSION is sufficient to induce abscission in Arabidopsis through the receptor-like kinases HAESA and HAESA-like2. The Plant Cell 20:1805−17 doi: 10.1105/tpc.108.059139
CrossRef Google Scholar
|
[77]
|
Wilmowicz E, Kućko A, Tranbarger TJ, Ostrowski M, Niedojadło J, et al. 2022. EPIP as an abscission promoting agent in the phytohormonal pathway. Plant Physiology and Biochemistry 178:137−45 doi: 10.1016/j.plaphy.2022.03.008
CrossRef Google Scholar
|
[78]
|
Tranbarger TJ, Domonhedo H, Cazemajor M, Dubreuil C, Fischer U, et al. 2019. The PIP peptide of INFLORESCENCE DEFICIENT IN ABSCISSION enhances Populus leaf and Elaeis guineensis fruit abscission. Plants 8:143 doi: 10.3390/plants8060143
CrossRef Google Scholar
|
[79]
|
Taylor JE, Whitelaw CA. 2001. Signals in abscission. New Phytologist 151:323−40 doi: 10.1046/j.0028-646x.2001.00194.x
CrossRef Google Scholar
|
[80]
|
Mesejo C, Marzal A, Martínez-Fuentes A, Reig C, Agustí M. 2021. On how auxin, ethylene and IDA-peptide relate during mature Citrus fruit abscission-sciencedirect. Scientia Horticulturae 278:109855 doi: 10.1016/j.scienta.2020.109855
CrossRef Google Scholar
|
[81]
|
Tian Y, Chen Z, Jiang Z, Huang X, Zhang L, et al. 2021. Effects of plant growth regulators on flower abscission and growth of tea plant Camellia sinensis (L.) O. Kuntze. Journal of Plant Growth Regulation 41:1161−73 doi: 10.1007/s00344-021-10365-8
CrossRef Google Scholar
|
[82]
|
Meir S, Philosoph-Hadas S, Riov J, Tucker ML, Patterson SE, et al. 2019. Re-evaluation of the ethylene-dependent and -independent pathways in the regulation of floral and organ abscission. Journal of Experimental Botany 70:1461−67 doi: 10.1093/jxb/erz038
CrossRef Google Scholar
|
[83]
|
Guo C, Wang Q, Li Z, Sun J, Zhang Z, et al. 2021. Bioinformatics and expression analysis of IDA-like genes reveal their potential functions in flower abscission and stress response in tobacco (Nicotiana tabacum L.). Frontiers in Genetics 12:670794 doi: 10.3389/fgene.2021.670794
CrossRef Google Scholar
|
[84]
|
Ma C, Meir S, Xiao L, Tong J, Liu Q, et al. 2015. A KNOTTED1-LIKE HOMEOBOX protein regulates abscission in tomato by modulating the auxin pathway. Plant Physiology 167:844−53 doi: 10.1104/pp.114.253815
CrossRef Google Scholar
|
[85]
|
Reichardt S, Piepho HP, Stintzi A, Schaller A. 2020. Peptide signaling for drought-induced tomato flower drop. Science 367:1482−85 doi: 10.1126/science.aaz5641
CrossRef Google Scholar
|
[86]
|
Wang R, Li R, Cheng L, Wang X, Fu X, et al. 2021. SlERF52 regulates SlTIP1;1 expression to accelerate tomato pedicel abscission. Plant Physiology 185:1829−46 doi: 10.1093/plphys/kiab026
CrossRef Google Scholar
|
[87]
|
Cheng L, Li R, Wang X, Ge S, Wang S, et al. 2022. A SlCLV3-SlWUS module regulates auxin and ethylene homeostasis in low light-induced tomato flower abscission. The Plant Cell 34:4388−408 doi: 10.1093/plcell/koac254
CrossRef Google Scholar
|
[88]
|
Liu X, Cheng L, Li R, Cai Y, Wang X, et al. 2022. The HD-ZIP transcription factor SlHB15a regulates abscission by modulating jasmonoyl-isoleucine biosynthesis. Plant Physiology 189:2396−412 doi: 10.1093/plphys/kiac212
CrossRef Google Scholar
|
[89]
|
Gao Y, Liu Y, Liang Y, Lu J, Jiang C, et al. 2019. Rosa hybrida RhERF1 and RhERF4 mediate ethylene- and auxin-regulated petal abscission by influencing pectin degradation. The Plant Journal 99:1159−71 doi: 10.1111/tpj.14412
CrossRef Google Scholar
|
[90]
|
Liang Y, Jiang C, Liu Y, Gao Y, Lu J, et al. 2020. Auxin regulates sucrose transport to repress petal abscission in rose (Rosa hybrida). The Plant Cell 32:3485−99 doi: 10.1105/tpc.19.00695
CrossRef Google Scholar
|
[91]
|
Jiang C, Liang Y, Deng S, Liu Y, Zhao H, et al. 2023. The RhLOL1-RhILR3 module mediates cytokinin-induced petal abscission in rose. New Phytologist 237:483−96 doi: 10.1111/nph.18556
CrossRef Google Scholar
|
[92]
|
Ma X, Xie X, He Z, Wang F, Fan R, et al. 2023. A LcDOF5.6-LcRbohD regulatory module controls the reactive oxygen species-mediated fruitlet abscission in litchi. The Plant Journal 113:954−68 doi: 10.1111/tpj.16092
CrossRef Google Scholar
|
[93]
|
Ma X, Yuan Y, Wu Q, Wang J, Li J, et al. 2020. LcEIL2/3 are involved in fruitlet abscission via activating genes related to ethylene biosynthesis and cell wall remodeling in litchi. The Plant Journal 103:1338−50 doi: 10.1111/tpj.14804
CrossRef Google Scholar
|
[94]
|
Li C, Zhao M, Ma X, Wen Z, Ying P, et al. 2019. The HD-ZIP transcription factor LcHB2 regulates litchi fruit abscission through the activation of two cellulase genes. Journal of Experimental Botany 70:5189−203 doi: 10.1093/jxb/erz276
CrossRef Google Scholar
|
[95]
|
Qiu Z, Wen Z, Hou Q, Qiao G, Yang K, et al. 2021. Cross-talk between transcriptome, phytohormone and HD-ZIP gene family analysis illuminates the molecular mechanism underlying fruitlet abscission in sweet cherry (Prunus avium L.). BMC Plant Biology 21:173 doi: 10.1186/s12870-021-02940-8
CrossRef Google Scholar
|
[96]
|
Hewitt S, Kilian B, Koepke T, Abarca J, Whiting M, et al. 2021. Transcriptome analysis reveals potential mechanisms for ethylene-inducible pedicel-fruit abscission zone activation in non-climacteric sweet cherry (Prunus avium L.). Horticulturae 7:270 doi: 10.3390/horticulturae7090270
CrossRef Google Scholar
|
[97]
|
Rai AC, Halon E, Zemach H, Zviran T, Sisai I, et al. 2021. Characterization of two ethephon-induced IDA-like genes from mango, and elucidation of their involvement in regulating organ abscission. Genes 12:439 doi: 10.3390/genes12030439
CrossRef Google Scholar
|