[1]
|
Ali MM, Anwar R, Shafique MW, Yousef AF, Chen F. 2021. Exogenous application of Mg, Zn and B influences phyto-nutritional composition of leaves and fruits of loquat (Eriobotrya japonica Lindl.). Agronomy 11:224 doi: 10.3390/agronomy11020224
CrossRef Google Scholar
|
[2]
|
Ali MM, Li B, Zhi C, Yousef AF, Chen F. 2021. Foliar-supplied molybdenum improves phyto-nutritional composition of leaves and fruits of loquat (Eriobotrya japonica Lindl.). Agronomy 11:892 doi: 10.3390/agronomy11050892
CrossRef Google Scholar
|
[3]
|
Badenes ML, Canyamas T, Romero CC, Soriano JM, Martinez J, et al. 2003. Genetic diversity in European collection of loquat (Eriobotrya japonica Lindl.). Acta Horticulturae 620:169−74
Google Scholar
|
[4]
|
Zhi C, Ali MM, Zhang J, Shi M, Ma S, et al. 2021. Effect of paper and aluminum bagging on fruit quality of loquat (Eriobotrya japonica Lindl.). Plants 10:2704 doi: 10.3390/plants10122704
CrossRef Google Scholar
|
[5]
|
Tian S, Qin G, Li B. 2011. Loquat (Eriobotrya japonica L.). In Postharvest Biology and Technology of Tropical and Subtropical Fruits, ed. Yahia EM. Elsevier. pp. 424−444e. https://doi.org/10.1533/9780857092885.424
|
[6]
|
Karadenİz T, Șenyurt M, Bak T. 2012. Loquat as a source of nectar and pollen in the winter for beekeeping. Scientific Papers, Series B, Horticulture LVI:319−22
Google Scholar
|
[7]
|
Ali MM, Rizwan HM, Yousef AF, Zhi C, Chen F. 2021. Analysis of toxic elements in leaves and fruits of loquat by inductively coupled plasma-mass spectrometry (ICP-MS). Acta Scientiarum Polonorum Hortorum Cultus 20:33−42 doi: 10.24326/asphc.2021.5.4
CrossRef Google Scholar
|
[8]
|
Zheng S, Johnson AJ, Li Y, Chu C, Hulcr J. 2019. Cryphalus eriobotryae sp. nov. (Coleoptera:Curculionidae:Scolytinae), a new insect pest of loquat Eriobotrya japonica in China. Insects 10:180 doi: 10.3390/insects10060180
CrossRef Google Scholar
|
[9]
|
Chen F, Liu X, Chen L. 2009. Developmental changes in pulp organic acid concentration and activities of acid-metabolising enzymes during the fruit development of two loquat (Eriobotrya japonica Lindl.) cultivars differing in fruit acidity. Food Chemistry 114:657−64 doi: 10.1016/j.foodchem.2008.10.003
CrossRef Google Scholar
|
[10]
|
Bermejo A, Cano A. 2012. Analysis of nutritional constituents in twenty citrus cultivars from the Mediterranean area at different stages of ripening. Food and Nutrition Sciences 3:639−50 doi: 10.4236/fns.2012.35088
CrossRef Google Scholar
|
[11]
|
Ren J, Tai Y, Dong M, Shao J, Yang S, et al. 2015. Characterisation of free and bound volatile compounds from six different varieties of citrus fruits. Food Chemistry 185:25−32 doi: 10.1016/j.foodchem.2015.03.142
CrossRef Google Scholar
|
[12]
|
Zhang X, Wei X, Ali MM, Rizwan HM, Li B, et al. 2021. Changes in the content of organic acids and expression analysis of citric acid accumulation-related genes during fruit development of yellow (Passiflora edulis f. flavicarpa) and purple (Passiflora edulis f. edulis) passion fruits. International Journal of Molecular Sciences 22:5765 doi: 10.3390/ijms22115765
CrossRef Google Scholar
|
[13]
|
Zhang Y, Hu C, Tan Q, Zheng C, Gui H, et al. 2014. Plant nutrition status, yield and quality of satsuma mandarin (Citrus unshiu Marc.) under soil application of Fe-EDDHA and combination with zinc and manganese in calcareous soil. Scientia Horticulturae 174:46−53 doi: 10.1016/j.scienta.2014.05.005
CrossRef Google Scholar
|
[14]
|
Ruffner H, Possner D, Brem S, Rast D. 1984. The physiological role of malic enzyme in grape ripening. Planta 160:444−48 doi: 10.1007/BF00429761
CrossRef Google Scholar
|
[15]
|
Pan T, Ali MM, Gong J, She W, Pan D, et al. 2021. Fruit physiology and sugar-acid profile of 24 pomelo (Citrus grandis (L.) Osbeck) cultivars grown in subtropical region of China. Agronomy 11:2393 doi: 10.3390/agronomy11122393
CrossRef Google Scholar
|
[16]
|
Yu X, Ali MM, Li B, Fang T, Chen F. 2021. Transcriptome data-based identification of candidate genes involved in metabolism and accumulation of soluble sugars during fruit development in 'Huangguan' plum. Journal of Food Biochemistry 45:e13878 doi: 10.1111/jfbc.13878
CrossRef Google Scholar
|
[17]
|
Yu X, Ali MM, Gull S, Fang T, Wu W, et al. 2023. Transcriptome data-based identification and expression profiling of genes potentially associated with malic acid accumulation in plum (Prunus salicina Lindl.). Scientia Horticulturae 322:112397 doi: 10.1016/j.scienta.2023.112397
CrossRef Google Scholar
|
[18]
|
Ali MM, Anwar R, Rehman RNU, Ejaz S, Ali S, et al. 2022. Sugar and acid profile of loquat (Eriobotrya japonica Lindl.), enzymes assay and expression profiling of their metabolism-related genes as influenced by exogenously applied boron. Frontiers in Plant Science 13:1039360 doi: 10.3389/fpls.2022.1039360
CrossRef Google Scholar
|
[19]
|
Ali MM, Gull S, Hu X, Hou Y, Chen F. 2023. Exogenously applied zinc improves sugar-acid profile of loquat (Eriobotrya japonica Lindl.) by regulating enzymatic activities and expression of their metabolism-related genes. Plant Physiology and Biochemistry 201:107829 doi: 10.1016/j.plaphy.2023.107829
CrossRef Google Scholar
|
[20]
|
Pedranzani H, Vigliocco A. 2017. Regulation of jasmonic acid and salicylic acid levels in abiotic stress tolerance: past and present. In Mechanisms Behind Phytohormonal Signalling and Crop Abiotic Stress Tolerance, eds. Singh VP, Singh S, Prasad SM. New York, NY: Nova Science Publishers. pp. 329−70
|
[21]
|
Ali Q, Shahid S, Nazar N, Hussain AI, Ali S, et al. 2020. Use of phytohormones in conferring tolerance to environmental stress. In Plant Ecophysiology and Adaptation under Climate Change: Mechanisms and Perspectives II, ed. Hasanuzzaman M. Springer, Singapore. pp. 245−355. https://doi.org/10.1007/978-981-15-2172-0_11
|
[22]
|
Creelman RA, Mullet JE. 1995. Jasmonic acid distribution and action in plants: regulation during development and response to biotic and abiotic stress. Proceedings of the National Academy of Sciences of the United States of America 92:4114−19 doi: 10.1073/pnas.92.10.4114
CrossRef Google Scholar
|
[23]
|
Lolaei A, Zamani S, Ahmadian E, Mobasheri S. 2013. Effect of methyl jasmonate on the composition of yield and growth of strawberry (Selva and Queen Elisa). International Journal of Agriculture and Crop Sciences 5:200−06
Google Scholar
|
[24]
|
Ali MM, Anwar R, Malik AU, Khan AS, Ahmad S, et al. 2022. Plant growth and fruit quality response of strawberry is improved after exogenous application of 24-epibrassinolide. Journal of Plant Growth Regulation 41:1786−99 doi: 10.1007/s00344-021-10422-2
CrossRef Google Scholar
|
[25]
|
Hortwitz W. 1975. Official methods of analysis of the association of official analytical chemists, 12th edition. Washington, USA: Benjamin Franklin station. 1094 pp.
|
[26]
|
Sharma N, Kaur N, Gupta AK. 1998. Effects of gibberellic acid and chlorocholine chloride on tuberisation and growth of potato (Solanum tuberosum L). Journal of the Science of Food and Agriculture 78:466−70 doi: 10.1002/(SICI)1097-0010(199812)78:4<466::AID-JSFA140>3.0.CO;2-1
CrossRef Google Scholar
|
[27]
|
Gan X, Jing Y, Shahid MQ, He Y, Baloch FS, et al. 2020. Identification, phylogenetic analysis, and expression patterns of the SAUR gene family inloquat (Eriobotrya japonica). Turkish Journal of Agriculture and Forestry 44:15−23 doi: 10.3906/tar-1810-98
CrossRef Google Scholar
|
[28]
|
Zhi C, Ali MM, Alam SM, Gull S, Ali S, et al. 2022. Genome-wide in silico analysis and expression profiling of Phospho enol pyruvate carboxylase genes in loquat, apple, peach, strawberry and pear. Agronomy 12:25 doi: 10.3390/agronomy12010025
CrossRef Google Scholar
|
[29]
|
Ali MM, Alam SM, Anwar R, Ali S, Shi M, et al. 2021. Genome-wide identification, characterization and expression profiling of aluminum-activated malate transporters in Eriobotrya japonica Lindl. Horticulturae 7:441 doi: 10.3390/horticulturae7110441
CrossRef Google Scholar
|
[30]
|
Munhoz CF, Santos AA, Arenhart RA, Santini L, Monteiro-Vitorello CB, et al. 2015. Analysis of plant gene expression during passion fruit-Xanthomonas axonopodis interaction implicates lipoxygenase 2 in host defence. Annals of Applied Biology 167:135−55 doi: 10.1111/aab.12215
CrossRef Google Scholar
|
[31]
|
Livak KJ, Schmittgen TD. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCᴛ method. Methods 25:402−08 doi: 10.1006/meth.2001.1262
CrossRef Google Scholar
|
[32]
|
Xu L, Xu H, Cao Y, Yang P, Feng Y, et al. 2017. Validation of reference genes for quantitative real-time PCR during bicolor tepal development in asiatic hybrid lilies (Lilium spp.). Frontiers in Plant Science 8:669 doi: 10.3389/fpls.2017.00669
CrossRef Google Scholar
|
[33]
|
De Rossi S, Di Marco G, Bruno L, Gismondi A, Canini A. 2021. Investigating the drought and salinity effect on the redox components of Sulla coronaria (L.) Medik. Antioxidants 10:1048 doi: 10.3390/antiox10071048
CrossRef Google Scholar
|
[34]
|
Borsani J, Budde CO, Porrini L, Lauxmann MA, Lombardo VA, et al. 2009. Carbon metabolism of peach fruit after harvest: changes in enzymes involved in organic acid and sugar level modifications. Journal of Experimental Botany 60:1823−37 doi: 10.1093/jxb/erp055
CrossRef Google Scholar
|
[35]
|
Toker R, Gölükcü M, Tokgöz H, Tepe S. 2013. Organic acids and sugar compositions of some loquat cultivars (Eriobotrya japonica L.) grown in Turkey. Journal of Agricultural Sciences 19:121−28
Google Scholar
|
[36]
|
Wei Y, Xu F, Shao X. 2017. Changes in soluble sugar metabolism in loquat fruit during different cold storage. Journal of Food Science and Technology 54:1043−51 doi: 10.1007/s13197-017-2536-5
CrossRef Google Scholar
|
[37]
|
Cao S, Yang Z, Zheng Y. 2013. Sugar metabolism in relation to chilling tolerance of loquat fruit. Food Chemistry 136:139−43 doi: 10.1016/j.foodchem.2012.07.113
CrossRef Google Scholar
|
[38]
|
Liu S, Liu Y, Liu N, Zhang Y, Zhang Q, et al. 2016. Sugar and organic acid components in fruits of plum cultivar resources of genus Prunus. Scientia Agriculture Sinca 49:3188−98 doi: 10.3864/j.issn.0578-1752.2016.16.012
CrossRef Google Scholar
|
[39]
|
Wang S, Zheng W. 2005. Preharvest application of methyl jasmonate increases fruit quality and antioxidant capacity in raspberries. International Journal of Food Science & Technology 40:187−95 doi: 10.1111/j.1365-2621.2004.00930.x
CrossRef Google Scholar
|
[40]
|
Dong T, Wang B, Zhang H, Wang J, Yao Y, et al. 2020. Effects of different concentrations of methyl jasmonate on fruit quality of citrus Huangguogan. IOP Conference Series: Earth and Environmental Science 474:032026 doi: 10.1088/1755-1315/474/3/032026
CrossRef Google Scholar
|
[41]
|
Stevens MA, Kader AA, Albright M. 1979. Potential for increasing tomato flavor via increased sugar and acid content. Journal of the American Society for Horticultural Science 104:40−42 doi: 10.21273/JASHS.104.1.40
CrossRef Google Scholar
|
[42]
|
Mosa WFA, Abd EL-Megeed NA, Ali MM, Abada HS, Ali HM, et al. 2022. Preharvest foliar applications of citric acid, gibberellic acid and humic acid improve growth and fruit quality of 'Le Conte' pear (Pyrus communis L.). Horticulturae 8:507 doi: 10.3390/horticulturae8060507
CrossRef Google Scholar
|
[43]
|
Mosa WFA, Behiry SI, Ali HM, Abdelkhalek A, Sas-Paszt L, et al. 2022. Pomegranate trees quality under drought conditions using potassium silicate, nanosilver, and selenium spray with valorization of peels as fungicide extracts. Scientific Reports 12:6363 doi: 10.1038/s41598-022-10354-1
CrossRef Google Scholar
|
[44]
|
Li B, Ali MM, Guo T, Alam SM, Gull S, et al. 2022. Genome-wide identification, in silico analysis and expression profiling of SWEET gene family in loquat (Eriobotrya japonica Lindl.). Agriculture 12:1312 doi: 10.3390/agriculture12091312
CrossRef Google Scholar
|
[45]
|
Al-Saif AM, Mosa WFA, Saleh AA, Ali MM, Sas-Paszt L, et al. 2022. Yield and fruit quality response of pomegranate (Punica granatum) to foliar spray of potassium, calcium and kaolin. Horticulturae 8:946 doi: 10.3390/horticulturae8100946
CrossRef Google Scholar
|
[46]
|
Almutairi KF, Saleh AA, Ali MM, Sas-Paszt L, Abada HS, et al. 2022. Growth performance of guava trees after the exogenous application of amino acids glutamic acid, arginine, and glycine. Horticulturae 8:1110 doi: 10.3390/horticulturae8121110
CrossRef Google Scholar
|
[47]
|
Hamedalla AM, Ali MM, Ali WM, Ahmed MAA, Kaseb MO, et al. 2022. Increasing the performance of cucumber (Cucumis sativus L.) seedlings by LED illumination. Scientific Reports 12:852 doi: 10.1038/s41598-022-04859-y
CrossRef Google Scholar
|
[48]
|
Wang SY, Bowman L, Ding M. 2008. Methyl jasmonate enhances antioxidant activity and flavonoid content in blackberries (Rubus sp.) and promotes antiproliferation of human cancer cells. Food Chemistry 107:1261−69 doi: 10.1016/j.foodchem.2007.09.065
CrossRef Google Scholar
|
[49]
|
Saavedra GM, Sanfuentes E, Figueroa PM, Figueroa CR. 2017. Independent preharvest applications of methyl jasmonate and chitosan elicit differential upregulation of defense-related genes with reduced incidence of gray mold decay during postharvest storage of Fragaria chiloensis fruit. International Journal of Molecular Sciences 18:1420 doi: 10.3390/ijms18071420
CrossRef Google Scholar
|
[50]
|
Zuñiga PE, Castañeda Y, Arrey-Salas O, Fuentes L, Aburto F, et al. 2020. Methyl jasmonate applications from flowering to ripe fruit stages of strawberry (Fragaria × ananassa 'Camarosa') reinforce the fruit antioxidant response at post-harvest. Frontiers in Plant Science 11:538 doi: 10.3389/fpls.2020.00538
CrossRef Google Scholar
|
[51]
|
Chen Y, Zhang Q, Hu W, Zhang X, Wang L, et al. 2017. Evolution and expression of the fructokinase gene family in Saccharum. BMC Genomics 18:197 doi: 10.1186/s12864-017-3535-7
CrossRef Google Scholar
|
[52]
|
Renz A, Stitt M. 1993. Substrate specificity and product inhibition of different forms of fructokinases and hexokinases in developing potato tubers. Planta 190:166−75 doi: 10.1007/BF00196608
CrossRef Google Scholar
|
[53]
|
Damari-Weissler H, Rachamilevitch S, Aloni R, German MA, Cohen S, et al. 2009. LeFRK2 is required for phloem and xylem differentiation and the transport of both sugar and water. Planta 230:795−805 doi: 10.1007/s00425-009-0985-4
CrossRef Google Scholar
|
[54]
|
German MA, Dai N, Matsevitz T, Hanael R, Petreikov M, et al. 2003. Suppression of fructokinase encoded by LeFRK2 in tomato stem inhibits growth and causes wilting of young leaves. The Plant Journal 34:837−46 doi: 10.1046/j.1365-313X.2003.01765.x
CrossRef Google Scholar
|
[55]
|
Ruan YL. 2014. Sucrose metabolism: gateway to diverse carbon use and sugar signaling. Annual Review of Plant Biology 65:33−67 doi: 10.1146/annurev-arplant-050213-040251
CrossRef Google Scholar
|
[56]
|
Stein O, Granot D. 2019. An overview of sucrose synthases in plants. Frontiers in Plant Science 10:95 doi: 10.3389/fpls.2019.00095
CrossRef Google Scholar
|
[57]
|
Langenkämper G, Fung RWM, Newcomb RD, Atkinson RG, Gardner RC, et al. 2002. Sucrose phosphate synthase genes in plants belong to three different families. Journal of Molecular Evolution 54:322−32 doi: 10.1007/s00239-001-0047-4
CrossRef Google Scholar
|
[58]
|
Li M, Feng F, Cheng L. 2012. Expression patterns of genes involved in sugar metabolism and accumulation during apple fruit development. PLoS ONE 7:e33055 doi: 10.1371/journal.pone.0033055
CrossRef Google Scholar
|
[59]
|
Wang Z, Wei P, Wu M, Xu Y, Li F, et al. 2015. Analysis of the sucrose synthase gene family in tobacco: structure, phylogeny, and expression patterns. Planta 242:153−66 doi: 10.1007/s00425-015-2297-1
CrossRef Google Scholar
|
[60]
|
Xu X, Yang Y, Liu C, Sun Y, Zhang T, et al. 2019. The evolutionary history of the sucrose synthase gene family in higher plants. BMC Plant Biology 19:566 doi: 10.1186/s12870-019-2181-4
CrossRef Google Scholar
|
[61]
|
Abdullah M, Cao Y, Cheng X, Meng D, Chen Y, et al. 2018. The sucrose synthase gene family in Chinese pear (Pyrus bretschneideri Rehd.): structure, expression, and evolution. Molecules 23:1144 doi: 10.3390/molecules23051144
CrossRef Google Scholar
|
[62]
|
Dali N, Michaud D, Yelle S. 1992. Evidence for the involvement of sucrose phosphate synthase in the pathway of sugar accumulation in sucrose-accumulating tomato fruits. Plant Physiology 99:434−38 doi: 10.1104/pp.99.2.434
CrossRef Google Scholar
|
[63]
|
Liu J, Guo S, He H, Zhang H, Gong G, et al. 2013. Dynamic characteristics of sugar accumulation and related enzyme activities in sweet and non-sweet watermelon fruits. Acta Physiologiae Plantarum 35:3213−22 doi: 10.1007/s11738-013-1356-0
CrossRef Google Scholar
|
[64]
|
Zhu Q, Gao P, Liu S, Zhu Z, Amanullah S, et al. 2017. Comparative transcriptome analysis of two contrasting watermelon genotypes during fruit development and ripening. BMC Genomics 18:3 doi: 10.1186/s12864-016-3442-3
CrossRef Google Scholar
|
[65]
|
Li P, Wu W, Chen F, Liu X, Lin Y, et al. 2015. Prunus salicina 'Crown', a yellow-fruited Chinese plum. HortScience 50:1822−24 doi: 10.21273/HORTSCI.50.12.1822
CrossRef Google Scholar
|