[1]

Quigley DTG, Gainey PA, Easton C. 2017. Soapberry Sapindus sp. (Sapindaceae: Sapindoideae): Drift endocarps from UK waters. New Journal of Botany 7:160−64

doi: 10.1080/20423489.2017.1408187
[2]

Grisi PU, Ranal MA, Gualtieri SCJ, Santana DG. 2012. Allelopathic potential of Sapindus saponaria L. leaves in the control of weeds. Acta Scientiarum-Agronomy 34:1−9

doi: 10.4025/actasciagron.v34i1.11598
[3]

Rodrigues RR, Martins SV, De Barros LC. 2004. Tropical Rain Forest regeneration in an area degraded by mining in Mato Grosso State, Brazil. Forest Ecology and Management 190:323−33

doi: 10.1016/j.foreco.2003.10.023
[4]

Rodrigues AA, Vasconcelos Filho SC, Müller C, Rodrigues DA, Mendes GC, et al. 2018. Sapindus saponaria bioindicator potential concerning potassium fluoride exposure by simulated rainfall: Anatomical and physiological traits. Ecological Indicators 89:552−58

doi: 10.1016/j.ecolind.2018.02.043
[5]

Torres-Rodríguez S, Díaz-Triana JE, Villota A, Gómez W, Avella-MA. 2019. Ecological diagnostics, formulation and implementation of strategies for the restoration of an interandean dry tropical forest (Huila, Colombia). Caldasia 41:42−59

doi: 10.15446/caldasia.v41n1.71275
[6]

Schad AN, Dick GO, Dodd LL. 2017. Seed germination methods of the Texas Northern Blackland Prairie ecotype of Sapindus saponaria L. var. drummondii (Hook. and Arn.) L.D. Benson (Sapindaceae). Native Plants Journal 18:271−76

doi: 10.3368/npj.18.3.271
[7]

Tsuzuki JK, Svidzinski TIE, Shinobu CS, Silva LFA, Rodrigues-Filho E, et al. 2007. Antifungal activity of the extracts and saponins from Sapindus saponaria L. Anais da Academia Brasileira de Ciências 79:577−83

doi: 10.1590/S0001-37652007000400002
[8]

He X, Han Y, Wu S. 2018. A new species of Leptopulvinaria Kanda from China, with a key to species (Hemiptera, Coccomorpha, Coccidae). Zookeys 781:59−66

doi: 10.3897/zookeys.781.25713
[9]

Demolin-Leite GL. 2021. Importance indice: loss estimates and solution effectiveness on production. Cuban Journal of Agricultural Science 55:1−7 http://scielo.sld.cu/pdf/cjas/v55n2/2079-3480-cjas-55-02-e10.pdf.

[10]

Demolin-Leite GL. 2024. Percentage of importance indice-production unknown: loss and solution sources identification on system. Brazilian Journal of Biology 84:e253218

doi: 10.1590/1519-6984.253218
[11]

Alvares CA, Stape JL, Sentelhas PC, Gonçalves JLM, Sparovek G. 2013. Köppen's climate classification map for Brazil. Meteorologische Zeitschrift 22:711−28

doi: 10.1127/0941-2948/2013/0507
[12]

Silva JL, Demolin Leite GL, de Souza Tavares W, Souza Silva FW, Sampaio RA, et al. 2020. Diversity of arthropods on Acacia mangium (Fabaceae) and production of this plant with dehydrated sewage sludge in degraded area. Royal Society Open Science 7:e191196

doi: 10.1098/rsos.191196
[13]

Demolin-Leite GL, Azevedo AM. 2022. 'IIProductionUnknown': Analyzing Data Through of Percentage of Importance Indice (Production Unknown) and Its Derivations. Manual Package. pp. 1−18. https://CRAN.R-project.org/package=IIProductionUnknown

[14]

Nunes GDS, Medeiros AC, Araujo EL, Nogueira CHF, Sombra KDDS. 2013. Resistance of melon accessions to leafminer Liriomyza spp. (Diptera: Agromyzidae). Revista Brasileira de Fruticultura 35:746−54

doi: 10.1590/S0100-29452013000300011
[15]

Ferreira ECB, Freitas MTDS, Sombra KDDS, Siqueira HAAD, Araujo ELD, et al. 2017. Molecular identification of Liriomyza sp. in the northeast and southeast regions of Brazil. Revista Caatinga 30:892−900

doi: 10.1590/1983-21252017v30n409rc
[16]

Mcgovern RJ, Koh LH, To-Anun C, Wong SM. 2016. Reduced incidence of tomato yellow leaf curl virus and leafminer in a tomato cultivar in northern Thailand. Crop Protection 89:273−77

doi: 10.1016/j.cropro.2016.07.018
[17]

Fernandes FL, Picanço MC, De Sena FME, Xavier VM, Martins JC, et al. 2010. Natural biological control of pests and ecological interactions with predators and parasitoids in bean crop. Bioscience Journal 26:6−14

[18]

Carvalho JCN, Silva FWS, Leite GLD, Azevedo AM, Teixeira GL, et al. 2020. Does fertilization with dehydrated sewage sludge affect Terminalia argentea (Combretaceae) and associated arthropods community in a degraded area? Scientific Reports 10:e11811

doi: 10.1038/s41598-020-68747-z
[19]

Zhang W, Mcauslane HJ, Schuster DJ. 2004. Repellency of ginger oil to Bemisia argentifolii (Homoptera: Aleyrodidae) on tomato. Journal of Economic Entomology 97:1310−18

doi: 10.1093/jee/97.4.1310
[20]

Mansaray A, Sundufu AJ. 2009. Oviposition, development and survivorship of the sweetpotato whitefly Bemisia tabaci on soybean, Glycine max, and the garden bean, Phaseolus vulgaris. Journal of Insect Science 9:1

doi: 10.1673/031.009.0101
[21]

Kim S, Jung M, Song YJ, Kang C, Kim BY, et al. 2017. Evaluating the potential of the extract of Perilla sp. as a natural insecticide for Bemisia tabaci (Hemiptera: Aleyrodidae) on sweet peppers. Entomological Research 47:208−16

doi: 10.1111/1748-5967.12211
[22]

Felicio TNP, Costa TL, Sarmento RA, Ramos RS, Pereira PS, et al. 2019. Surrounding vegetation, climatic elements, and predators affect the spatial dynamics of Bemisia tabaci (Hemiptera: Aleyrodidae) in commercial melon fields. Journal of Economic Entomology 112:2774−81

doi: 10.1093/jee/toz181
[23]

Da Costa SSD, Leite GLD, Silva FWS, Santos JB, Azevedo AM, et al. 2021. Arthropods on Terminalia argentea (Combretaceae) fertlized with sewage sludge. Florida Entomologist 104:131−35

doi: 10.1653/024.104.0209
[24]

De Souza GF, Leite GLD, Silva FWS, Silva JL, Sampaio RA, et al. 2021. Bottom-up effects on arthropod communities in Platycyamus regnellii (Fabaceae) fertilized with dehydrated sewage sludge. Revista Colombiana de Entomologia 47:e8943

doi: 10.25100/socolen.v47i1.8943
[25]

Silva JL, Leite GLD, Guanabens REM, Azevedo AM, Fernandes GW, et al. 2021. Fertilization with dehydrated sewage sludge affects the phytophagous Hemiptera, tending ants, and Sternorryncha predators on Acacia mangium (Fabaceae). Annals of Applied Biology 179:345−53

doi: 10.1111/aab.12706
[26]

Zanuncio-Junior JS, Fornazier MJ, Dos Martins DS, Chamorro-Rengifo J, Queiróz RB, et al. 2017. Meroncidius intermedius (Orthoptera: Tettigoniidae): a threat to Brazilian banana. Florida Entomologist 100:669−71

doi: 10.1653/024.100.0329
[27]

Mota MVS, Demolin-Leite GL, Guanabens PFS, Teixeira GL, Soares MA, et al. 2023. Chewing insects, pollinators, and predators on Acacia auriculiformis A. Cunn. ex Beth (Fabales: Fabaceae) plants fertilized with dehydrated sewage sludge. Brazilian Journal of Biology 83:e248305

doi: 10.1590/1519-6984.248305
[28]

Farouk S, Osman MA. 2011. The effect of plant defense elicitors on common bean (Phaseolus vulgaris L.) growth and yield in absence or presence of spider mite (Tetranychus urticae Koch) infestation. Journal of Stress Physiology & Biochemistry 7:5−22

[29]

Murungi LK, Salifu D, Masinde P, Wesonga J, Nyende A, et al. 2014. Effects of the invasive tomato red spider mite (Acari: Tetranychidae) on growth and leaf yield of African nightshades. Crop Protection 59:57−62

doi: 10.1016/j.cropro.2014.02.001
[30]

Reichert MB, Silva GL, Rocha MDS, Johann L, Ferla NJ. 2014. Mite fauna (Acari) in soybean agroecosystem in the northwestern region of Rio Grande do Sul State, Brazil. Systematic and Applied Acarology 19:123−36

doi: 10.11158/saa.19.2.2
[31]

Leite GLD, Veloso RVS, Matioli AL, Feres CIMA, Soares MA, et al. 2021. Habitat complexity and mite population on Caryocar brasiliense trees. Acta Scientiarum-Agronnomy 43:e50164

doi: 10.4025/actasciagron.v43i1.50164
[32]

Leite GLD, Veloso RVS, Matioli AL, Soares MA, Lemes PG. 2022. Seasonal mite population distribution on Caryocar brasiliense trees in the Cerrado domain. Brazilian Journal of Biology 82:e236355

doi: 10.1590/1519-6984.236355
[33]

Sarwar M. 2015. Mites (Acarina) as vectors of plant pathogens and relation of these pests to plant diseases. Agricultural and Biological Sciences Journal 1:150−56

[34]

Poderoso JCM, Da Costa MKM, Correia-Oliveira, ME, Dantas PC, Zanuncio JC, et al. 2013. Occurrence of Tropidacris collaris (Orthoptera; Acridoidea; Romaleidae) damaging Casuarina glauca (Casuarinaceae) plants in the municipality of Central Bahia, Brazil. Florida Entomologist 96:268−69

doi: 10.1653/024.096.0143
[35]

Damascena JG, Leite GLD, Silva FWS, Soares MA, Guañabens REM, et al. 2017. Spatial distribution of phytophagous insects, natural enemies, and pollinators on Leucaena leucocephala (Fabales: Fabaceae) trees in the Cerrado. Florida Entomologist 100:558−65

doi: 10.1653/024.100.0311
[36]

Leite GLD, Picanço M, Zanuncio JC, Moreira MD, Jham GN. 2011. Hosting capacity of horticultural plants for insect pests in Brazil. Chilean Journal of Agricultural Research 71:383−89

doi: 10.4067/S0718-58392011000300006
[37]

Fernandes FS, Ramalho FS, Malaquias JB, Godoy WAC, Santos BDB. 2015. Interspecific associations between Cycloneda sanguinea and two aphid species (Aphis gossypii and Hyadaphis foeniculi) in sole-crop and fennel-cotton intercropping systems. Plos ONE 10:e0131449

doi: 10.1371/journal.pone.0131449
[38]

Fernandes MED, Zanuncio JC, Plata-Rueda A, Soares WS, Coelho RR, Fernandes FL. 2019. Quantification of prey consumption by the predators Chauliognathus flavipes (Coleoptera: Cantharidae), Cycloneda sanguinea (Coleoptera: Coccinellidae), and Orius insidiosus (Heteroptera: Anthocoridae). Florida Entomologist 102:231−33

doi: 10.1653/024.102.0138
[39]

Leite GLD, Veloso RVS, Zanuncio JC, Almeida CIM, Ferreira PSF, Fernandes GW, Soares MA. 2012a. Habitat complexity and Caryocar brasiliense herbivores (Insecta; Arachnida; Araneae). Florida Entomologist 95:819−30

doi: 10.1653/024.095.0402
[40]

Gonthier DJ, Ennis KK, Philpott SM, Vandermeer J, Perfecto I. 2013. Ants defend coffee from berry borer colonization. BioControl 58:815−20

doi: 10.1007/s10526-013-9541-z
[41]

Fagundes R, Dáttilo W, Ribeiro SP, Rico-Gray V, Jordano P, Del-Claro K. 2017. Differences among ant species in plant protection are related to production of extrafloral nectar and degree of leaf herbivory. Biological Journal of the Linnean Society 122:71−83

doi: 10.1093/biolinnean/blx059
[42]

Dassou AG, Vodouhé SD, Bokonon-Ganta A, Goergen G, Chailleux A, Dansi A, Carval D, Tixier P. 2019. Associated cultivated plants in tomato cropping systems structure arthropod communities and increase the Helicoverpa armigera regulation. Bulletin of Entomological Research 109:733−40

doi: 10.1017/S0007485319000117
[43]

Sanchez A. 2015. Fidelity and promiscuity in an ant-plant mutualism: A case study of Triplaris and Pseudomyrmex. PLoS ONE 10:e0143535

doi: 10.1371/journal.pone.0143535
[44]

Novgorodova TA. 2015. Organization of honeydew collection by foragers of different species of ants (Hymenoptera: Formicidae): Effect of colony size and species specificity. European Journal of Entomology 112:688−97

doi: 10.14411/eje.2015.077
[45]

Sanchez JA, López-Gallego E, La-Spina M. 2020. The impact of ant mutualistic and antagonistic interactions on the population dynamics of sap-sucking hemipterans in pear orchards. Pest Management Science 76:1422−34

doi: 10.1002/ps.5655
[46]

Karami-Jamour T, Mirmoayedi A, Zamani A, Khajehzadeh Y. 2018. The impact of ant attendance on protecting Aphis gossypii against two aphidophagous predators and it's role on the intraguild predation between them. Journal of Insect Behavior 31:222−39

doi: 10.1007/s10905-018-9688-7
[47]

Tong HJ, Ao Y, Li ZH, Wang Y, Jiang MX. 2019. Invasion biology of the cotton mealybug, Phenacoccus solenopsis Tinsley: Current knowledge and future directions. Journal of Integrative Agriculture 18:758−70

doi: 10.1016/S2095-3119(18)61972-0
[48]

Sagata K, Gibb H. 2016. The effect of temperature increases on an ant-Hemiptera-plant interaction. PLoS ONE 11:e0155131

doi: 10.1371/journal.pone.0155131