[1] |
Martin KI, Glaser DA. 2011. Cosmeceuticals: the new medicine of beauty. Missouri Medicine 108(1):60−63 |
[2] |
Mishra AP, Saklani S, Milella L, Tiwari P. 2014. Formulation and evaluation of herbal antioxidant face cream of Nardostachys jatamansi collected from Indian Himalayan region. Asian Pacific Journal of Tropical Biomedicine 4:S679−S682 doi: 10.12980/apjtb.4.2014apjtb-2014-0223 |
[3] |
Joseph B, Jini D. 2013. Antidiabetic effects of Momordica charantia (bitter melon) and its medicinal potency. Asian Pacific Journal of Tropical Disease 3(2):93−102 doi: 10.1016/s2222-1808(13)60052-3 |
[4] |
Daswani PG, Gholkar MS, Birdi TJ. 2017. Psidium guajava: A single plant for multiple health problems of rural Indian population. Pharmacognosy Reviews 11(22):167−74 doi: 10.4103/phrev.phrev_17_17 |
[5] |
Patocka J, Bhardwaj K, Klimova B, Nepovimova E, Wu Q, et al. 2020. Malus domestica: A Review on Nutritional Features, Chemical Composition, Traditional and Medicinal Value. Plants 9(11):1408 doi: 10.3390/plants9111408 |
[6] |
Akyüz E, Türkoğlu S, Sözgen Başkan K, Tütem E, Apak MR. 2020. Comparison of antioxidant capacities and antioxidant components of commercial bitter melon (Momordica charantia L.) products. Turkish Journal of Chemistry 44(6):1663−73 doi: 10.3906/kim-2007-67 |
[7] |
Hiramoto K, Orita K, Yamate Y, Kobayashi H. 2021. Momordica charantia. Ameliorates Atopic Dermatitis by Inhibiting the Expression of Inducible Nitric Oxidase Synthase in NC/Nga Mice. Food and Nutrition Sciences 12(11):1136−51 doi: 10.4236/fns.2021.1211083 |
[8] |
Sut S, Zengin G, Maggi F, Malagoli M, Dall'Acqua S. 2019. Triterpene Acid and Phenolics from Ancient Apples of Friuli Venezia Giulia as Nutraceutical Ingredients: LC-MS Study and In Vitro Activities. Molecules 24(6):1109 doi: 10.3390/molecules24061109 |
[9] |
Sanz MT, Campos C, Milani M, Foyaca M, Lamy A, et al. 2016. Biorevitalizing effect of a novel facial serum containing apple stem cell extract, pro-collagen lipopeptide, creatine, and urea on skin aging signs. Journal of Cosmetic Dermatology 15(1):24−30 doi: 10.1111/jocd.12173 |
[10] |
Angulo-López JE, Flores-Gallegos AC, Torres-León C, Ramírez-Guzmán KN, Martínez GA, et al. 2021. Guava (Psidium guajava L.). Fruit and Valorization of Industrialization By-Products. Processes 9(6):1075 doi: 10.3390/pr9061075 |
[11] |
Kumar M, Tomar M, Amarowicz R, Saurabh V, Nair MS, et al. 2021. Guava (Psidium guajava L.) Leaves: Nutritional Composition, Phytochemical Profile, and Health-Promoting Bioactivities. Foods 10(4):752 doi: 10.3390/foods10040752 |
[12] |
Naseer S, Hussain S, Naeem N, Pervaiz M, Rahman M. 2018. The phytochemistry and medicinal value of Psidium guajava (guava). Clinical Phytoscience 4:32 doi: 10.1186/s40816-018-0093-8 |
[13] |
Aksoy L, Güzey I, Düz M. 2022. Essential oil content, antioxidative characteristics and enzyme inhibitory activity of Sideritis akmanii Aytaç, Ekici & Dönmez. Turkish Journal of Pharmaceutical Sciences 19(1):76−83 doi: 10.4274/tjps.galenos.2021.86422 |
[14] |
Abdul Karim N. 2019. Antioxidant properties of stingless bee honey and its effect on the viability of lymphoblastoid cell line. Medicine & Health 14(1):91−105 doi: 10.17576/mh.2019.1401.08 |
[15] |
Tripathi IP, Mishra Mahendra KR, Yogesh P, Atul D, Noopa D, et al. 2012. HPLC analysis of methanolic extract of some medicinal plant leaves of Myrtaceae family. Internationale Pharmaceutica Sciencia 2(3):49−53 |
[16] |
Oh MJ, Abdul Hamid M, Ngadiran S, Seo YK, Sarmidi MR, Park CS. 2010. Ficus deltoidea (Mas cotek) extract exerted anti-melanogenic activity by preventing tyrosinase activity in vitro and by suppressing tyrosinase gene expression in B16F1 melanoma cells. Archives of Dermatological Research 303(3):161−70 doi: 10.1007/s00403-010-1089-5 |
[17] |
Era B, Floris S, Sogos V, Porcedda C, Piras A, et al. 2021. Anti-Aging Potential of Extracts from Washingtonia filifera Seeds. Plants 10(1):151 doi: 10.3390/plants10010151 |
[18] |
Fronza M, Heinzmann B, Hamburger M, Laufer S, Merfort I. 2009. Determination of the wound healing effect of Calendula extracts using the scratch assay with 3T3 fibroblasts. Journal of Ethnopharmacology 126(3):463−67 doi: 10.1016/j.jep.2009.09.014 |
[19] |
Zofia NŁ, Martyna ZD, Aleksandra Z, Tomasz B. 2020. Comparison of the antiaging and protective properties of plants from the Apiaceae Family. Oxidative Medicine and Cellular Longevity 2020:5307614 doi: 10.1155/2020/5307614 |
[20] |
Wong TS, Hashim Z, Zulkifli RM, Ismail HF, Zainol SN, et al. 2017. LD50 estimations for diabecineTM polyherbal extracts based on in vitro diabetic models of 3T3-l1, WRL-68 and 1.1B4 cell lines. Chemical Engineering Transactions 56:1567−72 doi: 10.3303/CET1756262 |
[21] |
Matabura VV, Kibazohi O. 2021. Physicochemical and sensory evaluation of mixed juices from banana, pineapple and passion fruits during storage. Tanzania Journal of Science 47(1):332−43 |
[22] |
Nobile V, Schiano I, Germani L, Cestone E, Navarro P, et al. 2023. Skin Anti-Aging Efficacy of a Four-Botanical Blend Dietary Ingredient: A Randomized, Double Blind, Clinical Study. Cosmetics 10(1):16 doi: 10.3390/cosmetics10010016 |
[23] |
Lvovskaya S, Smith DP. 2013. A Spoonful of Bitter Helps the Sugar Response Go Down. Neuron 79(4):612−14 doi: 10.1016/j.neuron.2013.07.038 |
[24] |
Haftek M, Abdayem R, Guyonnet-Debersac P. 2022. Skin Minerals: Key Roles of Inorganic Elements in Skin Physiological Functions. International Journal of Molecular Sciences 23(11):6267 doi: 10.3390/ijms23116267 |
[25] |
Kubola J, Siriamornpun S. 2008. Phenolic contents and antioxidant activities of bitter gourd (Momordica charantia L.) leaf, stem, and fruit fraction extracts in vitro. Food Chemistry 110(4):881−90 doi: 10.1016/j.foodchem.2008.02.076 |
[26] |
Du G, Zhu Y, Wang X, Zhang J, Tian C, et al. 2019. Phenolic composition of apple products and by-products based on cold pressing technology. Journal of Food Science and Technology 56(3):1389−97 doi: 10.1007/s13197-019-03614-y |
[27] |
Zhang KQ, Lin LL, Xu HJ. 2022. Research on antioxidant performance of diglucosyl gallic acid and its application in emulsion cosmetics. International Journal of Cosmetic Science 44(2):177−88 doi: 10.1111/ics.12766 |
[28] |
Borde VU, Pangrikar PP, Tekale SU. 2011. Gallic Acid in Ayurvedic Herbs and Formulations. Recent Research in Science and Technology 3(7):51−54 |
[29] |
Meena AK, Narasimhaji CV, Velvizhi D, Singh A, Rekha P, et al. 2018. Determination of Gallic Acid in Ayurvedic Polyherbal Formulation Triphala churna and its ingredients by HPLC and HPTLC. Research Journal of Pharmacy and Technology 11(8):3243 doi: 10.5958/0974-360x.2018.00596.6 |
[30] |
BenSaad LA, Kim KH, Quah CC, Kim WR, Shahimi M. 2017. Anti-inflammatory potential of ellagic acid, gallic acid, and punicalagin A&B isolated from Punica granatum. BMC Complementary and Alternative Medicine 17:47 doi: 10.1186/s12906-017-1555-0 |
[31] |
Willis S, Verghese M, McCollum M, Cheatom K, Willis Z, et al. 2017. A Comparison of Selected Phytochemical and Antioxidant Potential of Two Tea Beverages. Food and Nutrition Sciences 8(11):1039−49 doi: 10.4236/fns.2017.811076 |
[32] |
Fatanah DN, Abdullah N, Hashim N, Abd. Hamid A. 2018. Antioxidant and mutagenic activity of herbal tea prepared from Cosmos caudatus leaves at different maturity stages. Sains Malaysiana 47(4):725−30 doi: 10.17576/jsm-2018-4704-10 |
[33] |
Zainol MK, Abd-Hamid A, Yusof S, Muse R. 2003. Antioxidative activity and total phenolic compounds of leaf, root and petiole of four accessions of Centella asiatica (L.) Urban. Food Chemistry 81(4):575−81 doi: 10.1016/s0308-8146(02)00498-3 |
[34] |
Masaki H. 2010. Role of antioxidants in the skin: anti-aging effects. Journal of Dermatological Science 58(2):85−90 doi: 10.1016/j.jdermsci.2010.03.003 |
[35] |
Zaidi KU, Ali AS, Ali SA, Naaz I. 2014. Microbial tyrosinases: promising enzymes for pharmaceutical, food bioprocessing, and environmental industry. Biochemistry Research International 2014:854687 doi: 10.1155/2014/854687 |
[36] |
Limtrakul P, Yodkeeree S, Thippraphan P, Punfa W, Srisomboon J. 2016. Anti-aging and tyrosinase inhibition effects of Cassia fistula flower butanolic extract. BMC Complementary and Alternative Medicine 16:497 doi: 10.1186/s12906-016-1484-3 |
[37] |
Baumann L, Bernstein EF, Weiss AS, Bates D, Humphrey S, et al. 2021. Clinical relevance of elastin in the structure and function of skin. Aesthetic Surgery Journal Open Forum 3(3):ojab019 doi: 10.1093/asjof/ojab019 |
[38] |
Thring TSA, Hili P, Naughton DP. 2009. Anti-collagenase, anti-elastase and anti-oxidant activities of extracts from 21 plants. BMC Complementary and Alternative Medicine 9:27 doi: 10.1186/1472-6882-9-27 |
[39] |
Raphaelli CdeO, Azevedo JG, Pereira EdosS, Vinholes JR, Camargo TM, et al. 2021. Phenolic-rich apple extracts have photoprotective and anti-cancer effect in dermal cells. Phytomedicine Plus 1(4):100112 doi: 10.1016/j.phyplu.2021.100112 |
[40] |
Ahmad Z, Sarmidi MR, Hasham R. 2017. Evaluation of wound closure activity of cocos nucifera oil on scratched monolayer of human dermal fibroblasts. Chemical Engineering Transactions 56:1657−62 doi: 10.3303/CET1756277 |
[41] |
Karatas O, Gevrek F. 2019. Gallic acid liposome and powder gels improved wound healing in wistar rats. Annals of Medical Research 26(12):2720−27 doi: 10.5455/annalsmedres.2019.05.301 |
[42] |
Rahimi AM, Cai M, Hoyer-Fender S. 2022. Heterogeneity of the NIH3T3 Fibroblast Cell Line. Cells 11(17):2677 doi: 10.3390/cells11172677 |
[43] |
Zhang M, Aguilera D, Das C, Vasquez H, Zage P, et al. 2007. Measuring cytotoxicity: a new perspective on lC50. Anticancer Research 27(1A):35−38 |
[44] |
Nemudzivhadi V, Masoko P. 2014. In vitro assessment of cytotoxicity, antioxidant, and anti-inflammatory activities of Ricinus communis (Euphorbiaceae) leaf extracts. Evidence-Based Complementary and Alternative Medicine 1−8 doi: 10.1155/2014/625961 |
[45] |
Botham PA. 2004. Acute systemic toxicity—prospects for tiered testing strategies. Toxicology in Vitro 18:227−230 doi: 10.1016/S0887-2333(03)00143-7 |
[46] |
Interagency Coordinating Committee on the Validation of Alternative Methods (ICCVAM). 2006. ICCVAM test method evaluation report: in vitro cytotoxicity test methods for estimating starting doses for acute oral systemic toxicity tests. NIH Publication No. 07-4519. National Institute for Environmental Health Sciences, Research Triangle Park, North Carolina, United Stated. https://ntp.niehs.nih.gov/sites/default/files/iccvam/docs/acutetox_docs/brd_tmer/brdvol1_nov2006.pdf |