[1] |
Sardouei-Nasab S, Nemati Z, Mohammadi-Nejad G, Haghi R, Blattner FR. 2023. Phylogenomic investigation of safflower (Carthamus tinctorius) and related species using genotyping-by-sequencing (GBS). Scientific Reports 13:6212 doi: 10.1038/s41598-023-33347-0 |
[2] |
Ekin Z. 2005. Resurgence of safflower (Carthamus tinctorius L.) utilization: a global view. Journal of Agronomy 4:83−87 doi: 10.3923/ja.2005.83.87 |
[3] |
Chapman MA, Burke JM. 2007. DNA sequence diversity and the origin of cultivated safflower (Carthamus tinctorius L.; Asteraceae). BMC Plant Biology 7:60 doi: 10.1186/1471-2229-7-60 |
[4] |
Zeist Wv, Rooijen WW-v. 1992. Two interesting floral finds from third millennium B. C. Tell Hammam et-Turkman, northern Syria. Vegetation History and Archaeobotany 1:157−61 doi: 10.1007/BF00191555 |
[5] |
GBIF Secretariat. 2023. GBIF Backbone Taxonomy. Checklist dataset. https://doi.org/10.15468/39omei |
[6] |
FAOSTAT. 2023. FAOSTAT online database. www.fao.org/faostat/en/#home |
[7] |
Biradar SS, Patil MK, Naik VR, Mukta N, Nayidu NK, et al. 2022. Safflower improvement: conventional breeding and biotechnological approach. In Accelerated Plant Breeding, eds. Gosal SS, Wani SH. Cham: Springer. pp. 279−312. https://doi.org/10.1007/978-3-030-81107-5_9 |
[8] |
Xue X, Deng Y, Wang J, Zhou M, Liao L, et al. 2021. Hydroxysafflor yellow A, a natural compound from Carthamus tinctorius L. with good effect of alleviating atherosclerosis. Phytomedicine 91:153694 doi: 10.1016/j.phymed.2021.153694 |
[9] |
Zhao F, Wang P, Jiao Y, Zhang X, Chen D, et al. 2020. Hydroxysafflor yellow A: a systematical review on botanical resources, physicochemical properties, drug delivery system, pharmacokinetics, and pharmacological effects. Frontiers in Pharmacology 11:579332 doi: 10.3389/fphar.2020.579332 |
[10] |
Adamska I, Biernacka P. 2021. Bioactive substances in safflower flowers and their applicability in medicine and health-promoting foods. International Journal of Food Science 2021:6657639 doi: 10.1155/2021/6657639 |
[11] |
Suzuki S. 2021. Carthamin synthase provides new insight into traditional 'Beni' red pigment production from safflowers. Plant and Cell Physiology 62:1506−08 doi: 10.1093/pcp/pcab162 |
[12] |
Tamburini D, Dyer J, Davit P, Aceto M, Turina V, et al. 2019. Compositional and micro-morphological characterisation of red colourants in archaeological textiles from pharaonic Egypt. Molecules 24:3761 doi: 10.3390/molecules24203761 |
[13] |
Degano I, Łucejko JJ, Colombini MP. 2011. The unprecedented identification of safflower dyestuff in a 16th century tapestry through the application of a new reliable diagnostic procedure. Journal of Cultural Heritage 12:295−99 doi: 10.1016/j.culher.2011.02.003 |
[14] |
Zeng T, Xiao Q, Zhang J, Sun X, Guo B, et al. 2023. Identification of a secondary Q-marker in high-quality ecotypes of Carthamus tinctorius L. and exploration of the target preference. Food & Function 14:2710−26 doi: 10.1039/D2FO02596E |
[15] |
Tao T, He T, Wang X, Liu X. 2019. Metabolic profiling analysis of patients with coronary heart disease undergoing Xuefu Zhuyu decoction treatment. Frontiers in Pharmacology 10:985 doi: 10.3389/fphar.2019.00985 |
[16] |
Tao T, He T, Mao H, Wu X, Liu X. 2020. Non-targeted metabolomic profiling of coronary heart disease patients with Taohong Siwu decoction treatment. Frontiers in Pharmacology 11:651 doi: 10.3389/fphar.2020.00651 |
[17] |
Shi P, Ruan Y, Zhong C, Teng L, Ke L, et al. 2022. Identification of pharmacokinetic markers for safflower injection using a combination of system pharmacology, multicomponent pharmacokinetics, and quantitative proteomics study. Frontiers in Pharmacology 13:1062026 doi: 10.3389/fphar.2022.1062026 |
[18] |
Makino T, Wakushima H, Okamoto T, Okukubo Y, Saito KI, et al. 2002. Effects of Kangen-karyu on coagulation system and platelet aggregation in mice. Biological and Pharmaceutical Bulletin 25:523−25 doi: 10.1248/bpb.25.523 |
[19] |
Delshad E, Yousefi M, Sasannezhad P, Rakhshandeh H, Ayati Z. 2018. Medical uses of Carthamus tinctorius L. (Safflower): a comprehensive review from traditional medicine to modern medicine. Electronic Physician 10:6672−81 doi: 10.19082/6672 |
[20] |
Xian B, Wang R, Jiang H, Zhou Y, Yan J, et al. 2022. Comprehensive review of two groups of flavonoids in Carthamus tinctorius L. Biomedicine & Pharmacotherapy 153:113462 doi: 10.1016/j.biopha.2022.113462 |
[21] |
Wang S, Cao J, Deng J, Hou X, Hao E, et al. 2021. Chemical characterization of flavonoids and alkaloids in safflower (Carthamus tinctorius L.) by comprehensive two-dimensional hydrophilic interaction chromatography coupled with hybrid linear ion trap Orbitrap mass spectrometry. Food Chemistry: X 12:100143 doi: 10.1016/j.fochx.2021.100143 |
[22] |
Kazuma K, Takahashi T, Sato K, Takeuchi H, Matsumoto T, Okuno T. 2000. Quinochalcones and flavonoids from fresh florets in different cultivars of Carthamus tinctorius L |
[23] |
Wang R, Ren C, Dong S, Chen C, Xian B, et al. 2021. Integrated metabolomics and transcriptome analysis of flavonoid biosynthesis in safflower (Carthamus tinctorius L. ) with different colors. Frontiers in Plant Science 12:712038 doi: 10.3389/fpls.2021.712038 |
[24] |
Davies KM, Jibran R, Zhou Y, Albert NW, Brummell DA, et al. 2020. The evolution of flavonoid biosynthesis: a bryophyte perspective. Frontiers in Plant Science 11:4 doi: 10.3389/fpls.2020.00007 |
[25] |
Nabavi SM, Šamec D, Tomczyk M, Milella L, Russo D, et al. 2020. Flavonoid biosynthetic pathways in plants: versatile targets for metabolic engineering. Biotechnology Advances 38:107316 doi: 10.1016/j.biotechadv.2018.11.005 |
[26] |
Liu W, Feng Y, Yu S, Fan Z, Li X, et al. 2021. The flavonoid biosynthesis network in plants. International Journal of Molecular Sciences 22:12824 doi: 10.3390/ijms222312824 |
[27] |
Zhang Z, Guo M, Zhang J. 2009. Identification of AFLP fragments linked to hydroxysafflor yellow A in Flos Carthami and conversion to a SCAR marker for rapid selection. Molecular Breeding 23:229−37 doi: 10.1007/s11032-008-9228-9 |
[28] |
Feng N, Li Y, Tang J, Wang Y, Guo M. 2010. cDNA-AFLP analysis on transcripts associated with hydroxysafflor yellow A (HSYA) biosynthetic pathway in Carthamus tinctorius. Biochemical Systematics and Ecology 38:971−80 doi: 10.1016/j.bse.2010.09.001 |
[29] |
Yang J, Wang Y, Guo M-L. 2011. Identification and mapping of a novel hydroxysafflor yellow A (HSYA) biosynthetic gene in Carthamus tinctorius. Biochemical Genetics 49:410−15 doi: 10.1007/s10528-011-9417-9 |
[30] |
Tang J, Lou Z, Wang Y, Guo M. 2010. Expression of a small heat shock protein (CTL-hsyapr) screened by cDNA-AFLP approach is correlated with hydroxysafflor yellow A in safflower (Carthamus tinctorius L.). Biochemical Systematics and Ecology 38:722−30 doi: 10.1016/j.bse.2010.06.001 |
[31] |
Li Y, Wang Z, Chang H, Wang Y, Guo M. 2010. Expression of CT-wpr, screened by cDNA-AFLP approach, associated with hydroxysafflor yellow A in Carthamus tinctorius L. Biochemical Systematics and Ecology 38:1148−55 doi: 10.1016/j.bse.2010.10.010 |
[32] |
Wu ZH, Liao R, Dong X, Qin R, Liu H. 2019. Complete chloroplast genome sequence of Carthamus tinctorius L. from PacBio Sequel platform. Mitochondrial DNA Part B 4:2635−36 doi: 10.1080/23802359.2019.1643799 |
[33] |
Wu Z, Liu H, Zhan W, Yu Z, Qin E, et al. 2021. The chromosome-scale reference genome of safflower (Carthamus tinctorius) provides insights into linoleic acid and flavonoid biosynthesis. Plant Biotechnology Journal 19:1725−42 doi: 10.1111/pbi.13586 |
[34] |
Wu Z, Yang T, Qin R, Liu H. 2023. Complete mitogenome and phylogenetic analysis of the Carthamus tinctorius L. Genes 14:979 doi: 10.3390/genes14050979 |
[35] |
Guo D, Xue Y, Li D, He B, Jia X, et al. 2017. Overexpression of CtCHS1 increases accumulation of quinochalcone in safflower. Frontiers in Plant Science 8:1409 doi: 10.3389/fpls.2017.01409 |
[36] |
Tang X, Ren C, Hu J, Chen J, Wang J, et al. 2023. Cloning, expression and activity analysises of chalcone synthase genes in Carthamus tinctorius. Chinese Herbal Medicines 15:291−97 doi: 10.1016/j.chmed.2022.12.005 |
[37] |
Xian B, Xi Z, Ren C, Yan J, Chen J, et al. 2023. The establishment of transient expression systems and their application for gene function analysis of flavonoid biosynthesis in Carthamus tinctorius L |
[38] |
Guo D, Gao Y, Liu F, He B, Jia X, et al. 2019. Integrating molecular characterization and metabolites profile revealed CtCHI1's significant role in Carthamus tinctorius L. BMC Plant Biology 19:376 doi: 10.1186/s12870-019-1962-0 |
[39] |
Huang L, Yang X, Sun P, Tong W, Hu S. 2012. The first Illumina-based de novo transcriptome sequencing and analysis of safflower flowers. PLoS ONE 7:e38653 doi: 10.1371/journal.pone.0038653 |
[40] |
Qiang T, Liu J, Dong Y, Ma Y, Zhang B, et al. 2020. Transcriptome sequencing and chemical analysis reveal the formation mechanism of white florets in Carthamus tinctorius L. Plants 9:847 doi: 10.3390/plants9070847 |
[41] |
Ren C, Chen C, Dong S, Wang R, Xian B, et al. 2022. Integrated metabolomics and transcriptome analysis on flavonoid biosynthesis in flowers of safflower (Carthamus tinctorius L.) during colour-transition. PeerJ 10:e13591 doi: 10.7717/peerj.13591 |
[42] |
Liu X, Dong Y, Yao N, Zhang Y, Wang N, et al. 2015. De novo |
[43] |
Chen J, Tang X, Ren C, Wei B, Wu Y, et al. 2018. Full-length transcriptome sequences and the identification of putative genes for flavonoid biosynthesis in safflower. BMC Genomics 19:15489 doi: 10.1186/s12864-018-4946-9 |
[44] |
Waki T, Terashita M, Fujita N, Fukuda K, Kato M, et al. 2021. Identification of the genes coding for carthamin synthase, peroxidase homologs that catalyze the final enzymatic step of red pigmentation in safflower (Carthamus tinctorius L.). Plant and Cell Physiology 62:1528−41 doi: 10.1093/pcp/pcab122 |
[45] |
Guo DD, Liu F, Tu YH, He BX, Gao Y, et al. 2016. Expression patterns of three UGT genes in different chemotype safflower lines and under MeJA stimulus revealed their potential role in flavonoid biosynthesis. PLoS ONE 11:e0158159 doi: 10.1371/journal.pone.0158159 |
[46] |
Qian Y, Zhang T, Yu Y, Gou L, Yang J, et al. 2021. Regulatory mechanisms of bHLH transcription factors in plant adaptive responses to various abiotic stresses. Frontiers in Plant Science 12:677611 doi: 10.3389/fpls.2021.677611 |
[47] |
Pratyusha DS, Sarada DVL. 2022. MYB transcription factors-master regulators of phenylpropanoid biosynthesis and diverse developmental and stress responses. Plant Cell Reports 41:2245−60 doi: 10.1007/s00299-022-02927-1 |
[48] |
Hong Y, Ahmad N, Zhang J, Lv Y, Zhang X, et al. 2022. Genome-wide analysis and transcriptional reprogrammings of MYB superfamily revealed positive insights into abiotic stress responses and anthocyanin accumulation in Carthamus tinctorius L. Molecular Genetics and Genomics 297:125−45 doi: 10.1007/s00438-021-01839-1 |
[49] |
Hong Y, Ahmad N, Tian Y, Liu J, Wang L, et al. 2019. Genome-wide identification, expression analysis, and subcellular localization of Carthamus tinctorius bHLH transcription factors. International Journal of Molecular Sciences 20:3044 doi: 10.3390/ijms20123044 |
[50] |
Li Y, Shan X, Gao R, Han T, Zhang J, et al. 2020. MYB repressors and MBW activation complex collaborate to fine-tune flower coloration in Freesia hybrida. Communications Biology 3:396 doi: 10.1038/s42003-020-01134-6 |
[51] |
Xu W, Dubos C, Lepiniec L. 2015. Transcriptional control of flavonoid biosynthesis by MYB–bHLH–WDR complexes. Trends in Plant Science 20:176−85 doi: 10.1016/j.tplants.2014.12.001 |
[52] |
Hong Y, Lv Y, Zhang J, Ahmad N, Li X, et al. 2023. The safflower MBW complex regulates HYSA accumulation through degradation by the E3 ligase CtBB1. Journal of Integrative Plant Biology 65:1277−96 doi: 10.1111/jipb.13444 |
[53] |
Zhao C, Liu X, Gong Q, Cao J, Shen W, et al. 2021. Three AP2/ERF family members modulate flavonoid synthesis by regulating type IV chalcone isomerase in citrus. Plant Biotechnology Journal 19:671−88 doi: 10.1111/pbi.13494 |
[54] |
Naik J, Misra P, Trivedi PK, Pandey A. 2022. Molecular components associated with the regulation of flavonoid biosynthesis. Plant Science 317:111196 doi: 10.1016/j.plantsci.2022.111196 |
[55] |
Yu JS, Zhang MM, Shi J, Yang Y, Meng X, et al. 2021. Research progress on mechanism of phytohormones in regulating flavonoid metabolism. Zhongguo Zhong Yao Za Zhi 46:3806−13 doi: 10.19540/j.cnki.cjcmm.20210522.103 |
[56] |
Tu Y, Liu F, Guo D, Fan L, Zhu Z, et al. 2016. Molecular characterization of flavanone 3-hydroxylase gene and flavonoid accumulation in two chemotyped safflower lines in response to methyl jasmonate stimulation. BMC Plant Biology 16:132 doi: 10.1186/s12870-016-0813-5 |
[57] |
Chen J, Wang J, Wang R, Xian B, Ren C, et al. 2020. Integrated metabolomics and transcriptome analysis on flavonoid biosynthesis in safflower (Carthamus tinctorius L.) under MeJA treatment. BMC Plant Biology 20:353 doi: 10.1186/s12870-020-02554-6 |
[58] |
Zhang X, Ahmad N, Zhang Q, Wakeel Umar A, Wang N, et al. 2023. Safflower flavonoid 3′5′hydroxylase promotes methyl jasmonate-induced anthocyanin accumulation in transgenic plants. Molecules 28:3205 doi: 10.3390/molecules28073205 |
[59] |
Wang YF, Li ZL, Ahmad N, Sheng XX, Iqbal B, et al. 2023. Unraveling the functional characterization of a jasmonate-induced flavonoid biosynthetic CYP45082G24 gene in Carthamustinctorius. Functional & Integrative Genomics 23:172 doi: 10.1007/s10142-023-01110-3 |
[60] |
Tu Y, He B, Gao S, Guo D, Jia X, et al. 2019. CtACO1 overexpression resulted in the alteration of the flavonoids profile of safflower. Molecules 24:1128 doi: 10.3390/molecules24061128 |
[61] |
He B, Zhang Y, Wang L, Guo D, Jia X, et al. 2022. Both two CtACO3 transcripts promoting the accumulation of the flavonoid profiles in overexpressed transgenic safflower. Frontiers in Plant Science 13:833811 doi: 10.3389/fpls.2022.833811 |
[62] |
Bai S, Saito T, Honda C, Hatsuyama Y, Ito A, et al. 2014. An apple B-box protein, MdCOL11, is involved in UV-B- and temperature-induced anthocyanin biosynthesis. Planta 240:1051−62 doi: 10.1007/s00425-014-2129-8 |
[63] |
Li P, Li YJ, Zhang FJ, Zhang GZ, Jiang XY, et al. 2017. The Arabidopsis UDP-glycosyltransferases UGT79B2 and UGT79B3, contribute to cold, salt and drought stress tolerance via modulating anthocyanin accumulation. The Plant Journal 89:85−103 doi: 10.1111/tpj.13324 |
[64] |
Ma Y, Ma X, Gao X, Wu W, Zhou B. 2021. Light induced regulation pathway of anthocyanin biosynthesis in plants. International Journal of Molecular Sciences 22:11116 doi: 10.3390/ijms222011116 |
[65] |
An JP, Wang XF, Zhang XW, Bi SQ, You CX, et al. 2019. MdBBX22 regulates UV-B-induced anthocyanin biosynthesis through regulating the function of MdHY5 and is targeted by MdBT2 for 26S proteasome-mediated degradation. Plant Biotechnology Journal 17:2231−33 doi: 10.1111/pbi.13196 |
[66] |
Rubin G, Tohge T, Matsuda F, Saito K, Scheible WR. 2009. Members of the LBD family of transcription factors repress anthocyanin synthesis and affect additional nitrogen responses in Arabidopsis. Plant Cell 21:3567−84 doi: 10.1105/tpc.109.067041 |
[67] |
Ren C, Wang J, Xian B, Tang X, Liu X, et al. 2020. Transcriptome analysis of flavonoid biosynthesis in safflower flowers grown under different light intensities. PeerJ 8:e8671 doi: 10.7717/peerj.8671 |
[68] |
Xian B, Chen C, Wang J, Chen J, Wu Q, et al. 2023. Cloning and expression analysis of HY5 transcription factor gene of safflower in response to light signal. Biotechnology and Applied Biochemistry 70:509−17 doi: 10.1002/bab.2373 |
[69] |
Liu J, Ahmad N, Hong Y, Zhu M, Zaman S, et al. 2022. Molecular characterization of an isoflavone 2'-hydroxylase gene revealed positive insights into flavonoid accumulation and abiotic stress tolerance in safflower. Molecules 27:8001 doi: 10.3390/molecules27228001 |
[70] |
Hou Y, Wang Y, Liu X, Ahmad N, Wang N, et al. 2023. A cinnamate 4-hydroxylase1 from safflower promotes flavonoids accumulation and stimulates antioxidant defense system in Arabidopsis. International Journal of Molecular Sciences 24:5393 doi: 10.3390/ijms24065393 |
[71] |
Ming L, Fu D, Wu Z, Zhao H, Xu X, et al. 2023. Transcriptome-wide association analyses reveal the impact of regulatory variants on rice panicle architecture and causal gene regulatory networks. Nature Communications 14:7501 doi: 10.1038/s41467-023-43077-6 |
[72] |
Lv P, Su F, Chen F, Yan C, Xia D, et al. 2024. Genome editing in rice using CRISPR/Cas12i3. Plant Biotechnology Journal 22:379−85 doi: 10.1111/pbi.14192 |
[73] |
Xie K, Chen R, Li J, Wang R, Chen D, et al. 2014. Exploring the catalytic promiscuity of a new glycosyltransferase from Carthamus tinctorius. Organic Letters 16:4874−77 doi: 10.1021/ol502380p |
[74] |
Lin J, Yin X, Zeng Y, Hong X, Zhang S, et al. 2023. Progress and prospect: Biosynthesis of plant natural products based on plant chassis. Biotechnology Advances 69:108266 doi: 10.1016/j.biotechadv.2023.108266 |
[75] |
Meng F, Ellis T. 2020. The second decade of synthetic biology: 2010-2020. Nature Communications 11:5174 doi: 10.1038/s41467-020-19092-2 |
[76] |
Li Q, Jia E, Yan Y, Ma R, Dong J, et al. 2022. Using the strategy of inducing and genetically transforming plant suspension cells to produce high value-added bioactive substances. Journal of Agricultural and Food Chemistry 70:699−710 doi: 10.1021/acs.jafc.1c05712 |
[77] |
Liu N, Wu XY, Song YD, Gao W, Huang LQ. 2021. Tissue culture of safflower and analysis of secondary metabolites in suspension cells. Zhongguo Zhong Yao Za Zhi 46:4380−88 doi: 10.19540/j.cnki.cjcmm.20210523.105 |
[78] |
An JP, Wang XF, Li YY, Song LQ, Zhao LL, et al. 2018. EIN3-LIKE1, MYB1, and ETHYLENE RESPONSE FACTOR3 act in a regulatory loop that synergistically modulates ethylene biosynthesis and anthocyanin accumulation. Plant Physiology 178:808−23 doi: 10.1104/pp.18.00068 |
[79] |
Ni J, Zhao Y, Tao R, Yin L, Gao L, et al. 2020. Ethylene mediates the branching of the jasmonate‐induced flavonoid biosynthesis pathway by suppressing anthocyanin biosynthesis in red Chinese pear fruits. Plant Biotechnology Journal 18:1223−40 doi: 10.1111/pbi.13287 |
[80] |
Dong Y, Wu Y, Zhang Z, Wang S, Cheng J, et al. 2023. Transcriptomic analysis reveals GA3 is involved in regulating flavonoid metabolism in grape development for facility cultivation. Molecular Genetics Genomics 298:845−55 doi: 10.1007/s00438-023-02019-z |
[81] |
Yang M, Wang L, Belwal T, Zhang X, Lu H, et al. 2020. Exogenous melatonin and abscisic acid expedite the flavonoids biosynthesis in grape berry of Vitis vinifera cv. Kyoho. Molecules 25:12 doi: 10.3390/molecules25010012 |
[82] |
Brunetti C, Sebastiani F, Tattini M. 2019. Review: ABA, flavonols, and the evolvability of land plants. Plant Science 280:448−54 doi: 10.1016/j.plantsci.2018.12.010 |
[83] |
Samkumar A, Jones D, Karppinen K, Dare AP, Sipari N, et al. 2021. Red and blue light treatments of ripening bilberry fruits reveal differences in signalling through abscisic acid-regulated anthocyanin biosynthesis. Plant Cell and Environment 44:3227−45 doi: 10.1111/pce.14158 |