[1]
|
Sardouei-Nasab S, Nemati Z, Mohammadi-Nejad G, Haghi R, Blattner FR. 2023. Phylogenomic investigation of safflower (Carthamus tinctorius) and related species using genotyping-by-sequencing (GBS). Scientific Reports 13:6212 doi: 10.1038/s41598-023-33347-0
CrossRef Google Scholar
|
[2]
|
Ekin Z. 2005. Resurgence of safflower (Carthamus tinctorius L.) utilization: a global view. Journal of Agronomy 4:83−87 doi: 10.3923/ja.2005.83.87
CrossRef Google Scholar
|
[3]
|
Chapman MA, Burke JM. 2007. DNA sequence diversity and the origin of cultivated safflower (Carthamus tinctorius L.; Asteraceae). BMC Plant Biology 7:60 doi: 10.1186/1471-2229-7-60
CrossRef Google Scholar
|
[4]
|
Zeist Wv, Rooijen WW-v. 1992. Two interesting floral finds from third millennium B. C. Tell Hammam et-Turkman, northern Syria. Vegetation History and Archaeobotany 1:157−61 doi: 10.1007/BF00191555
CrossRef Google Scholar
|
[5]
|
GBIF Secretariat. 2023. GBIF Backbone Taxonomy. Checklist dataset. https://doi.org/10.15468/39omei
|
[6]
|
FAOSTAT. 2023. FAOSTAT online database. www.fao.org/faostat/en/#home
|
[7]
|
Biradar SS, Patil MK, Naik VR, Mukta N, Nayidu NK, et al. 2022. Safflower improvement: conventional breeding and biotechnological approach. In Accelerated Plant Breeding, eds. Gosal SS, Wani SH. Cham: Springer. pp. 279−312. https://doi.org/10.1007/978-3-030-81107-5_9
|
[8]
|
Xue X, Deng Y, Wang J, Zhou M, Liao L, et al. 2021. Hydroxysafflor yellow A, a natural compound from Carthamus tinctorius L. with good effect of alleviating atherosclerosis. Phytomedicine 91:153694 doi: 10.1016/j.phymed.2021.153694
CrossRef Google Scholar
|
[9]
|
Zhao F, Wang P, Jiao Y, Zhang X, Chen D, et al. 2020. Hydroxysafflor yellow A: a systematical review on botanical resources, physicochemical properties, drug delivery system, pharmacokinetics, and pharmacological effects. Frontiers in Pharmacology 11:579332 doi: 10.3389/fphar.2020.579332
CrossRef Google Scholar
|
[10]
|
Adamska I, Biernacka P. 2021. Bioactive substances in safflower flowers and their applicability in medicine and health-promoting foods. International Journal of Food Science 2021:6657639 doi: 10.1155/2021/6657639
CrossRef Google Scholar
|
[11]
|
Suzuki S. 2021. Carthamin synthase provides new insight into traditional 'Beni' red pigment production from safflowers. Plant and Cell Physiology 62:1506−08 doi: 10.1093/pcp/pcab162
CrossRef Google Scholar
|
[12]
|
Tamburini D, Dyer J, Davit P, Aceto M, Turina V, et al. 2019. Compositional and micro-morphological characterisation of red colourants in archaeological textiles from pharaonic Egypt. Molecules 24:3761 doi: 10.3390/molecules24203761
CrossRef Google Scholar
|
[13]
|
Degano I, Łucejko JJ, Colombini MP. 2011. The unprecedented identification of safflower dyestuff in a 16th century tapestry through the application of a new reliable diagnostic procedure. Journal of Cultural Heritage 12:295−99 doi: 10.1016/j.culher.2011.02.003
CrossRef Google Scholar
|
[14]
|
Zeng T, Xiao Q, Zhang J, Sun X, Guo B, et al. 2023. Identification of a secondary Q-marker in high-quality ecotypes of Carthamus tinctorius L. and exploration of the target preference. Food & Function 14:2710−26 doi: 10.1039/D2FO02596E
CrossRef Google Scholar
|
[15]
|
Tao T, He T, Wang X, Liu X. 2019. Metabolic profiling analysis of patients with coronary heart disease undergoing Xuefu Zhuyu decoction treatment. Frontiers in Pharmacology 10:985 doi: 10.3389/fphar.2019.00985
CrossRef Google Scholar
|
[16]
|
Tao T, He T, Mao H, Wu X, Liu X. 2020. Non-targeted metabolomic profiling of coronary heart disease patients with Taohong Siwu decoction treatment. Frontiers in Pharmacology 11:651 doi: 10.3389/fphar.2020.00651
CrossRef Google Scholar
|
[17]
|
Shi P, Ruan Y, Zhong C, Teng L, Ke L, et al. 2022. Identification of pharmacokinetic markers for safflower injection using a combination of system pharmacology, multicomponent pharmacokinetics, and quantitative proteomics study. Frontiers in Pharmacology 13:1062026 doi: 10.3389/fphar.2022.1062026
CrossRef Google Scholar
|
[18]
|
Makino T, Wakushima H, Okamoto T, Okukubo Y, Saito KI, et al. 2002. Effects of Kangen-karyu on coagulation system and platelet aggregation in mice. Biological and Pharmaceutical Bulletin 25:523−25 doi: 10.1248/bpb.25.523
CrossRef Google Scholar
|
[19]
|
Delshad E, Yousefi M, Sasannezhad P, Rakhshandeh H, Ayati Z. 2018. Medical uses of Carthamus tinctorius L. (Safflower): a comprehensive review from traditional medicine to modern medicine. Electronic Physician 10:6672−81 doi: 10.19082/6672
CrossRef Google Scholar
|
[20]
|
Xian B, Wang R, Jiang H, Zhou Y, Yan J, et al. 2022. Comprehensive review of two groups of flavonoids in Carthamus tinctorius L. Biomedicine & Pharmacotherapy 153:113462 doi: 10.1016/j.biopha.2022.113462
CrossRef Google Scholar
|
[21]
|
Wang S, Cao J, Deng J, Hou X, Hao E, et al. 2021. Chemical characterization of flavonoids and alkaloids in safflower (Carthamus tinctorius L.) by comprehensive two-dimensional hydrophilic interaction chromatography coupled with hybrid linear ion trap Orbitrap mass spectrometry. Food Chemistry: X 12:100143 doi: 10.1016/j.fochx.2021.100143
CrossRef Google Scholar
|
[22]
|
Kazuma K, Takahashi T, Sato K, Takeuchi H, Matsumoto T, Okuno T. 2000. Quinochalcones and flavonoids from fresh florets in different cultivars of Carthamus tinctorius L. Bioscience, Biotechnology, and Biochemistry 64:1588−99 doi: 10.1271/bbb.64.1588
CrossRef Google Scholar
|
[23]
|
Wang R, Ren C, Dong S, Chen C, Xian B, et al. 2021. Integrated metabolomics and transcriptome analysis of flavonoid biosynthesis in safflower (Carthamus tinctorius L. ) with different colors. Frontiers in Plant Science 12:712038 doi: 10.3389/fpls.2021.712038
CrossRef Google Scholar
|
[24]
|
Davies KM, Jibran R, Zhou Y, Albert NW, Brummell DA, et al. 2020. The evolution of flavonoid biosynthesis: a bryophyte perspective. Frontiers in Plant Science 11:4 doi: 10.3389/fpls.2020.00007
CrossRef Google Scholar
|
[25]
|
Nabavi SM, Šamec D, Tomczyk M, Milella L, Russo D, et al. 2020. Flavonoid biosynthetic pathways in plants: versatile targets for metabolic engineering. Biotechnology Advances 38:107316 doi: 10.1016/j.biotechadv.2018.11.005
CrossRef Google Scholar
|
[26]
|
Liu W, Feng Y, Yu S, Fan Z, Li X, et al. 2021. The flavonoid biosynthesis network in plants. International Journal of Molecular Sciences 22:12824 doi: 10.3390/ijms222312824
CrossRef Google Scholar
|
[27]
|
Zhang Z, Guo M, Zhang J. 2009. Identification of AFLP fragments linked to hydroxysafflor yellow A in Flos Carthami and conversion to a SCAR marker for rapid selection. Molecular Breeding 23:229−37 doi: 10.1007/s11032-008-9228-9
CrossRef Google Scholar
|
[28]
|
Feng N, Li Y, Tang J, Wang Y, Guo M. 2010. cDNA-AFLP analysis on transcripts associated with hydroxysafflor yellow A (HSYA) biosynthetic pathway in Carthamus tinctorius. Biochemical Systematics and Ecology 38:971−80 doi: 10.1016/j.bse.2010.09.001
CrossRef Google Scholar
|
[29]
|
Yang J, Wang Y, Guo M-L. 2011. Identification and mapping of a novel hydroxysafflor yellow A (HSYA) biosynthetic gene in Carthamus tinctorius. Biochemical Genetics 49:410−15 doi: 10.1007/s10528-011-9417-9
CrossRef Google Scholar
|
[30]
|
Tang J, Lou Z, Wang Y, Guo M. 2010. Expression of a small heat shock protein (CTL-hsyapr) screened by cDNA-AFLP approach is correlated with hydroxysafflor yellow A in safflower (Carthamus tinctorius L.). Biochemical Systematics and Ecology 38:722−30 doi: 10.1016/j.bse.2010.06.001
CrossRef Google Scholar
|
[31]
|
Li Y, Wang Z, Chang H, Wang Y, Guo M. 2010. Expression of CT-wpr, screened by cDNA-AFLP approach, associated with hydroxysafflor yellow A in Carthamus tinctorius L. Biochemical Systematics and Ecology 38:1148−55 doi: 10.1016/j.bse.2010.10.010
CrossRef Google Scholar
|
[32]
|
Wu ZH, Liao R, Dong X, Qin R, Liu H. 2019. Complete chloroplast genome sequence of Carthamus tinctorius L. from PacBio Sequel platform. Mitochondrial DNA Part B 4:2635−36 doi: 10.1080/23802359.2019.1643799
CrossRef Google Scholar
|
[33]
|
Wu Z, Liu H, Zhan W, Yu Z, Qin E, et al. 2021. The chromosome-scale reference genome of safflower (Carthamus tinctorius) provides insights into linoleic acid and flavonoid biosynthesis. Plant Biotechnology Journal 19:1725−42 doi: 10.1111/pbi.13586
CrossRef Google Scholar
|
[34]
|
Wu Z, Yang T, Qin R, Liu H. 2023. Complete mitogenome and phylogenetic analysis of the Carthamus tinctorius L. Genes 14:979 doi: 10.3390/genes14050979
CrossRef Google Scholar
|
[35]
|
Guo D, Xue Y, Li D, He B, Jia X, et al. 2017. Overexpression of CtCHS1 increases accumulation of quinochalcone in safflower. Frontiers in Plant Science 8:1409 doi: 10.3389/fpls.2017.01409
CrossRef Google Scholar
|
[36]
|
Tang X, Ren C, Hu J, Chen J, Wang J, et al. 2023. Cloning, expression and activity analysises of chalcone synthase genes in Carthamus tinctorius. Chinese Herbal Medicines 15:291−97 doi: 10.1016/j.chmed.2022.12.005
CrossRef Google Scholar
|
[37]
|
Xian B, Xi Z, Ren C, Yan J, Chen J, et al. 2023. The establishment of transient expression systems and their application for gene function analysis of flavonoid biosynthesis in Carthamus tinctorius L. BMC Plant Biology 23:186 doi: 10.1186/s12870-023-04210-1
CrossRef Google Scholar
|
[38]
|
Guo D, Gao Y, Liu F, He B, Jia X, et al. 2019. Integrating molecular characterization and metabolites profile revealed CtCHI1's significant role in Carthamus tinctorius L. BMC Plant Biology 19:376 doi: 10.1186/s12870-019-1962-0
CrossRef Google Scholar
|
[39]
|
Huang L, Yang X, Sun P, Tong W, Hu S. 2012. The first Illumina-based de novo transcriptome sequencing and analysis of safflower flowers. PLoS ONE 7:e38653 doi: 10.1371/journal.pone.0038653
CrossRef Google Scholar
|
[40]
|
Qiang T, Liu J, Dong Y, Ma Y, Zhang B, et al. 2020. Transcriptome sequencing and chemical analysis reveal the formation mechanism of white florets in Carthamus tinctorius L. Plants 9:847 doi: 10.3390/plants9070847
CrossRef Google Scholar
|
[41]
|
Ren C, Chen C, Dong S, Wang R, Xian B, et al. 2022. Integrated metabolomics and transcriptome analysis on flavonoid biosynthesis in flowers of safflower (Carthamus tinctorius L.) during colour-transition. PeerJ 10:e13591 doi: 10.7717/peerj.13591
CrossRef Google Scholar
|
[42]
|
Liu X, Dong Y, Yao N, Zhang Y, Wang N, et al. 2015. De novo sequencing and analysis of the safflower transcriptome to discover putative genes associated with safflor yellow in Carthamus tinctorius L. International Journal of Molecular Sciences 16:25657−77 doi: 10.3390/ijms161025657
CrossRef Google Scholar
|
[43]
|
Chen J, Tang X, Ren C, Wei B, Wu Y, et al. 2018. Full-length transcriptome sequences and the identification of putative genes for flavonoid biosynthesis in safflower. BMC Genomics 19:15489 doi: 10.1186/s12864-018-4946-9
CrossRef Google Scholar
|
[44]
|
Waki T, Terashita M, Fujita N, Fukuda K, Kato M, et al. 2021. Identification of the genes coding for carthamin synthase, peroxidase homologs that catalyze the final enzymatic step of red pigmentation in safflower (Carthamus tinctorius L.). Plant and Cell Physiology 62:1528−41 doi: 10.1093/pcp/pcab122
CrossRef Google Scholar
|
[45]
|
Guo DD, Liu F, Tu YH, He BX, Gao Y, et al. 2016. Expression patterns of three UGT genes in different chemotype safflower lines and under MeJA stimulus revealed their potential role in flavonoid biosynthesis. PLoS ONE 11:e0158159 doi: 10.1371/journal.pone.0158159
CrossRef Google Scholar
|
[46]
|
Qian Y, Zhang T, Yu Y, Gou L, Yang J, et al. 2021. Regulatory mechanisms of bHLH transcription factors in plant adaptive responses to various abiotic stresses. Frontiers in Plant Science 12:677611 doi: 10.3389/fpls.2021.677611
CrossRef Google Scholar
|
[47]
|
Pratyusha DS, Sarada DVL. 2022. MYB transcription factors-master regulators of phenylpropanoid biosynthesis and diverse developmental and stress responses. Plant Cell Reports 41:2245−60 doi: 10.1007/s00299-022-02927-1
CrossRef Google Scholar
|
[48]
|
Hong Y, Ahmad N, Zhang J, Lv Y, Zhang X, et al. 2022. Genome-wide analysis and transcriptional reprogrammings of MYB superfamily revealed positive insights into abiotic stress responses and anthocyanin accumulation in Carthamus tinctorius L. Molecular Genetics and Genomics 297:125−45 doi: 10.1007/s00438-021-01839-1
CrossRef Google Scholar
|
[49]
|
Hong Y, Ahmad N, Tian Y, Liu J, Wang L, et al. 2019. Genome-wide identification, expression analysis, and subcellular localization of Carthamus tinctorius bHLH transcription factors. International Journal of Molecular Sciences 20:3044 doi: 10.3390/ijms20123044
CrossRef Google Scholar
|
[50]
|
Li Y, Shan X, Gao R, Han T, Zhang J, et al. 2020. MYB repressors and MBW activation complex collaborate to fine-tune flower coloration in Freesia hybrida. Communications Biology 3:396 doi: 10.1038/s42003-020-01134-6
CrossRef Google Scholar
|
[51]
|
Xu W, Dubos C, Lepiniec L. 2015. Transcriptional control of flavonoid biosynthesis by MYB–bHLH–WDR complexes. Trends in Plant Science 20:176−85 doi: 10.1016/j.tplants.2014.12.001
CrossRef Google Scholar
|
[52]
|
Hong Y, Lv Y, Zhang J, Ahmad N, Li X, et al. 2023. The safflower MBW complex regulates HYSA accumulation through degradation by the E3 ligase CtBB1. Journal of Integrative Plant Biology 65:1277−96 doi: 10.1111/jipb.13444
CrossRef Google Scholar
|
[53]
|
Zhao C, Liu X, Gong Q, Cao J, Shen W, et al. 2021. Three AP2/ERF family members modulate flavonoid synthesis by regulating type IV chalcone isomerase in citrus. Plant Biotechnology Journal 19:671−88 doi: 10.1111/pbi.13494
CrossRef Google Scholar
|
[54]
|
Naik J, Misra P, Trivedi PK, Pandey A. 2022. Molecular components associated with the regulation of flavonoid biosynthesis. Plant Science 317:111196 doi: 10.1016/j.plantsci.2022.111196
CrossRef Google Scholar
|
[55]
|
Yu JS, Zhang MM, Shi J, Yang Y, Meng X, et al. 2021. Research progress on mechanism of phytohormones in regulating flavonoid metabolism. Zhongguo Zhong Yao Za Zhi 46:3806−13 doi: 10.19540/j.cnki.cjcmm.20210522.103
CrossRef Google Scholar
|
[56]
|
Tu Y, Liu F, Guo D, Fan L, Zhu Z, et al. 2016. Molecular characterization of flavanone 3-hydroxylase gene and flavonoid accumulation in two chemotyped safflower lines in response to methyl jasmonate stimulation. BMC Plant Biology 16:132 doi: 10.1186/s12870-016-0813-5
CrossRef Google Scholar
|
[57]
|
Chen J, Wang J, Wang R, Xian B, Ren C, et al. 2020. Integrated metabolomics and transcriptome analysis on flavonoid biosynthesis in safflower (Carthamus tinctorius L.) under MeJA treatment. BMC Plant Biology 20:353 doi: 10.1186/s12870-020-02554-6
CrossRef Google Scholar
|
[58]
|
Zhang X, Ahmad N, Zhang Q, Wakeel Umar A, Wang N, et al. 2023. Safflower flavonoid 3′5′hydroxylase promotes methyl jasmonate-induced anthocyanin accumulation in transgenic plants. Molecules 28:3205 doi: 10.3390/molecules28073205
CrossRef Google Scholar
|
[59]
|
Wang YF, Li ZL, Ahmad N, Sheng XX, Iqbal B, et al. 2023. Unraveling the functional characterization of a jasmonate-induced flavonoid biosynthetic CYP45082G24 gene in Carthamustinctorius. Functional & Integrative Genomics 23:172 doi: 10.1007/s10142-023-01110-3
CrossRef Google Scholar
|
[60]
|
Tu Y, He B, Gao S, Guo D, Jia X, et al. 2019. CtACO1 overexpression resulted in the alteration of the flavonoids profile of safflower. Molecules 24:1128 doi: 10.3390/molecules24061128
CrossRef Google Scholar
|
[61]
|
He B, Zhang Y, Wang L, Guo D, Jia X, et al. 2022. Both two CtACO3 transcripts promoting the accumulation of the flavonoid profiles in overexpressed transgenic safflower. Frontiers in Plant Science 13:833811 doi: 10.3389/fpls.2022.833811
CrossRef Google Scholar
|
[62]
|
Bai S, Saito T, Honda C, Hatsuyama Y, Ito A, et al. 2014. An apple B-box protein, MdCOL11, is involved in UV-B- and temperature-induced anthocyanin biosynthesis. Planta 240:1051−62 doi: 10.1007/s00425-014-2129-8
CrossRef Google Scholar
|
[63]
|
Li P, Li YJ, Zhang FJ, Zhang GZ, Jiang XY, et al. 2017. The Arabidopsis UDP-glycosyltransferases UGT79B2 and UGT79B3, contribute to cold, salt and drought stress tolerance via modulating anthocyanin accumulation. The Plant Journal 89:85−103 doi: 10.1111/tpj.13324
CrossRef Google Scholar
|
[64]
|
Ma Y, Ma X, Gao X, Wu W, Zhou B. 2021. Light induced regulation pathway of anthocyanin biosynthesis in plants. International Journal of Molecular Sciences 22:11116 doi: 10.3390/ijms222011116
CrossRef Google Scholar
|
[65]
|
An JP, Wang XF, Zhang XW, Bi SQ, You CX, et al. 2019. MdBBX22 regulates UV-B-induced anthocyanin biosynthesis through regulating the function of MdHY5 and is targeted by MdBT2 for 26S proteasome-mediated degradation. Plant Biotechnology Journal 17:2231−33 doi: 10.1111/pbi.13196
CrossRef Google Scholar
|
[66]
|
Rubin G, Tohge T, Matsuda F, Saito K, Scheible WR. 2009. Members of the LBD family of transcription factors repress anthocyanin synthesis and affect additional nitrogen responses in Arabidopsis. Plant Cell 21:3567−84 doi: 10.1105/tpc.109.067041
CrossRef Google Scholar
|
[67]
|
Ren C, Wang J, Xian B, Tang X, Liu X, et al. 2020. Transcriptome analysis of flavonoid biosynthesis in safflower flowers grown under different light intensities. PeerJ 8:e8671 doi: 10.7717/peerj.8671
CrossRef Google Scholar
|
[68]
|
Xian B, Chen C, Wang J, Chen J, Wu Q, et al. 2023. Cloning and expression analysis of HY5 transcription factor gene of safflower in response to light signal. Biotechnology and Applied Biochemistry 70:509−17 doi: 10.1002/bab.2373
CrossRef Google Scholar
|
[69]
|
Liu J, Ahmad N, Hong Y, Zhu M, Zaman S, et al. 2022. Molecular characterization of an isoflavone 2'-hydroxylase gene revealed positive insights into flavonoid accumulation and abiotic stress tolerance in safflower. Molecules 27:8001 doi: 10.3390/molecules27228001
CrossRef Google Scholar
|
[70]
|
Hou Y, Wang Y, Liu X, Ahmad N, Wang N, et al. 2023. A cinnamate 4-hydroxylase1 from safflower promotes flavonoids accumulation and stimulates antioxidant defense system in Arabidopsis. International Journal of Molecular Sciences 24:5393 doi: 10.3390/ijms24065393
CrossRef Google Scholar
|
[71]
|
Ming L, Fu D, Wu Z, Zhao H, Xu X, et al. 2023. Transcriptome-wide association analyses reveal the impact of regulatory variants on rice panicle architecture and causal gene regulatory networks. Nature Communications 14:7501 doi: 10.1038/s41467-023-43077-6
CrossRef Google Scholar
|
[72]
|
Lv P, Su F, Chen F, Yan C, Xia D, et al. 2024. Genome editing in rice using CRISPR/Cas12i3. Plant Biotechnology Journal 22:379−85 doi: 10.1111/pbi.14192
CrossRef Google Scholar
|
[73]
|
Xie K, Chen R, Li J, Wang R, Chen D, et al. 2014. Exploring the catalytic promiscuity of a new glycosyltransferase from Carthamus tinctorius. Organic Letters 16:4874−77 doi: 10.1021/ol502380p
CrossRef Google Scholar
|
[74]
|
Lin J, Yin X, Zeng Y, Hong X, Zhang S, et al. 2023. Progress and prospect: Biosynthesis of plant natural products based on plant chassis. Biotechnology Advances 69:108266 doi: 10.1016/j.biotechadv.2023.108266
CrossRef Google Scholar
|
[75]
|
Meng F, Ellis T. 2020. The second decade of synthetic biology: 2010-2020. Nature Communications 11:5174 doi: 10.1038/s41467-020-19092-2
CrossRef Google Scholar
|
[76]
|
Li Q, Jia E, Yan Y, Ma R, Dong J, et al. 2022. Using the strategy of inducing and genetically transforming plant suspension cells to produce high value-added bioactive substances. Journal of Agricultural and Food Chemistry 70:699−710 doi: 10.1021/acs.jafc.1c05712
CrossRef Google Scholar
|
[77]
|
Liu N, Wu XY, Song YD, Gao W, Huang LQ. 2021. Tissue culture of safflower and analysis of secondary metabolites in suspension cells. Zhongguo Zhong Yao Za Zhi 46:4380−88 doi: 10.19540/j.cnki.cjcmm.20210523.105
CrossRef Google Scholar
|
[78]
|
An JP, Wang XF, Li YY, Song LQ, Zhao LL, et al. 2018. EIN3-LIKE1, MYB1, and ETHYLENE RESPONSE FACTOR3 act in a regulatory loop that synergistically modulates ethylene biosynthesis and anthocyanin accumulation. Plant Physiology 178:808−23 doi: 10.1104/pp.18.00068
CrossRef Google Scholar
|
[79]
|
Ni J, Zhao Y, Tao R, Yin L, Gao L, et al. 2020. Ethylene mediates the branching of the jasmonate‐induced flavonoid biosynthesis pathway by suppressing anthocyanin biosynthesis in red Chinese pear fruits. Plant Biotechnology Journal 18:1223−40 doi: 10.1111/pbi.13287
CrossRef Google Scholar
|
[80]
|
Dong Y, Wu Y, Zhang Z, Wang S, Cheng J, et al. 2023. Transcriptomic analysis reveals GA3 is involved in regulating flavonoid metabolism in grape development for facility cultivation. Molecular Genetics Genomics 298:845−55 doi: 10.1007/s00438-023-02019-z
CrossRef Google Scholar
|
[81]
|
Yang M, Wang L, Belwal T, Zhang X, Lu H, et al. 2020. Exogenous melatonin and abscisic acid expedite the flavonoids biosynthesis in grape berry of Vitis vinifera cv. Kyoho. Molecules 25:12 doi: 10.3390/molecules25010012
CrossRef Google Scholar
|
[82]
|
Brunetti C, Sebastiani F, Tattini M. 2019. Review: ABA, flavonols, and the evolvability of land plants. Plant Science 280:448−54 doi: 10.1016/j.plantsci.2018.12.010
CrossRef Google Scholar
|
[83]
|
Samkumar A, Jones D, Karppinen K, Dare AP, Sipari N, et al. 2021. Red and blue light treatments of ripening bilberry fruits reveal differences in signalling through abscisic acid-regulated anthocyanin biosynthesis. Plant Cell and Environment 44:3227−45 doi: 10.1111/pce.14158
CrossRef Google Scholar
|