[1] |
Ray DK, West PC, Clark M, Gerber JS, Prishchepov AV, et al. 2019. Climate change has likely already affected global food production. PLoS ONE 14:e0217148 doi: 10.1371/journal.pone.0217148 |
[2] |
Abid M, Ali S, Qi LK, Zahoor R, Tian Z, et al. 2018. Physiological and biochemical changes during drought and recovery periods at tillering and jointing stages in wheat (Triticum aestivum L.). Scientific Reports 8:4615 doi: 10.1038/s41598-018-21441-7 |
[3] |
Mahpara S, Hussain ST, Farooq J. 2015. Drought tolerance studies in wheat (Triticum aestivum L.). Agronomic Research in Moldavia 47(4):133−40 doi: 10.1515/cerce-2015-0011 |
[4] |
Farooq M, Wahid A, Basra SMA, Islam-ud-Din. 2009. Improving water relations and gas exchange with brassinosteroids in rice under drought stress. Journal of Agronomy and Crop Science 195:262−69 doi: 10.1111/j.1439-037x.2009.00368.x |
[5] |
Osakabe Y, Osakabe K, Shinozaki K, Tran LSP. 2014. Response of plants to water stress. Frontiers in Plant Science 5:86 doi: 10.3389/fpls.2014.00086 |
[6] |
Wang Z, Li G, Sun H, Ma L, Guo Y, et al. 2018. Effects of drought stress on photosynthesis and photosynthetic electron transport chain in young apple tree leaves. Biology Open 7:bio035279 doi: 10.1242/bio.035279 |
[7] |
Morales F, Ancín M, Fakhet D, González-Torralba J, Gámez AL, et al. 2020. Photosynthetic metabolism under stressful growth conditions as a bases for crop breeding and yield improvement. Plants 9:88 doi: 10.3390/plants9010088 |
[8] |
Chaves MM, Flexas J, Pinheiro C. 2009. Photosynthesis under drought and salt stress: regulation mechanisms from whole plant to cell. Annals of Botany 103:551−60 doi: 10.1093/aob/mcn125 |
[9] |
Krochko JE, Winner WE, Bewley JD. 1979. Respiration in relation to adenosine triphosphate content during desiccation and rehydration of a desiccation-tolerant and a desiccation-intolerant moss. Plant Physiology 64:13−17 doi: 10.1104/pp.64.1.13 |
[10] |
Wakim S, Grewal M. 2021. Cellular Respiration. Butte College. https://bio.libretexts.org/@go/page/17025 |
[11] |
Leport L, Turner NC, French RJ, Barr MD, Duda R, et al. 1999. Physiological responses of chickpea genotypes to terminal drought in a Mediterranean-type environment. European Journal of Agronomy 11:279−91 doi: 10.1016/S1161-0301(99)00039-8 |
[12] |
Komor E. 2000. Source physiology and assimilate transport: the interaction of sucrose metabolism, starch storage and phloem export in source leaves and the effects on sugar status in phloem. Functional Plant Biology 27:497−505 doi: 10.1071/pp99127 |
[13] |
Kim JY, Mahé A, Brangeon J, Prioul JL. 2000. A maize vacuolar invertase, IVR2, is induced by water stress. Organ/tissue specificity and diurnal modulation of expression. Plant Physiology 124:71−84 doi: 10.1104/pp.124.1.71 |
[14] |
Zinselmeier C, Jeong BR, Boyer JS. 1999. Starch and the control of kernel number in maize at low water potentials. Plant Physiology 121:25−36 doi: 10.1104/pp.121.1.25 |
[15] |
Madzima TF, Vendramin S, Lynn JS, Lemert P, Lu KC, et al. 2021. Direct and indirect transcriptional effects of abiotic stress in Zea mays plants defective in RNA-directed DNA methylation. Frontiers in Plant Science 12:694289 doi: 10.3389/fpls.2021.694289 |
[16] |
Muhammad Aslam M, Waseem M, Jakada BH, Okal EJ, Lei Z, et al. 2022. Mechanisms of abscisic acid-mediated drought stress responses in plants. International Journal of Molecular Sciences 23(3):1084 doi: 10.3390/ijms23031084 |
[17] |
Boyer JS. 1982. Plant productivity and environment. Science 218:443−48 doi: 10.1126/science.218.4571.443 |
[18] |
Patel PK, Singh AK, Tripathi N, et al. 2014. Flooding: abiotic constraint limiting vegetable productivity. Advances in Plants & Agriculture Research 1(3):96−103 doi: 10.15406/apar.2014.01.00016 |
[19] |
Kozlowski TT. 1984. Plant responses to flooding of soil. BioScience 34(3):162−67 doi: 10.2307/1309751 |
[20] |
Meng X, Chen WW, Wang YY, Huang ZR, Ye X, et al. 2021. Effects of phosphorus deficiency on the absorption of mineral nutrients, photosynthetic system performance and antioxidant metabolism in Citrus grandis. PLoS ONE 16:e0246944 doi: 10.1371/journal.pone.0246944 |
[21] |
Morales-Olmedo M, Ortiz M, Sellés G. 2015. Effects of transient soil waterlogging and its importance for rootstock selection. Chilean Journal of Agricultural Research 75:45−56 doi: 10.4067/s0718-58392015000300006 |
[22] |
Pan J, Sharif R, Xu X, Chen X. 2021. Mechanisms of waterlogging tolerance in plants: research progress and prospects. Frontiers in Plant Science 11:627331 doi: 10.3389/fpls.2020.627331 |
[23] |
Herrera A. 2013. Responses to flooding of plant water relations and leaf gas exchange in tropical tolerant trees of a black-water wetland. Frontiers in Plant Science 4:106 doi: 10.3389/fpls.2013.00106 |
[24] |
Parent C, Capelli N, Berger A, Crèvecoeur M, Dat JF. 2008. An Overview of Plant Response to Soil Waterlogging. Plant Stress 2(1):20−27 |
[25] |
Yang B, Peng C, Zhu Q, Zhou X, Liu W, et al. 2019. The effects of persistent drought and waterlogging on the dynamics of nonstructural carbohydrates of Robinia pseudoacacia L. seedlings in Northwest China. Forest Ecosystems 6:23 doi: 10.1186/s40663-019-0181-3 |
[26] |
Guilioni L, Wéry J, Lecoeur J. 2003. High temperature and water deficit may reduce seed number in field pea purely by decreasing plant growth rate. Functional Plant Biology:FPB 30:1151−64 doi: 10.1071/FP03105 |
[27] |
Ismail AM, Hall AE. 1999. Reproductive-stage heat tolerance, leaf membrane thermostability and plant morphology in cowpea. Crop Science 39:1762−68 doi: 10.2135/cropsci1999.3961762x |
[28] |
Vollenweider P, Günthardt-Goerg MS. 2005. Diagnosis of abiotic and biotic stress factors using the visible symptoms in foliage. Environmental Pollution 137:455−65 doi: 10.1016/j.envpol.2005.01.032 |
[29] |
Giaveno C, Ferrero J. 2003. Introduction of tropical maize genotypes to increase silage production in the central area of Santa Fe, Argentina. Crop Breeding and Applied Biotechnology 3:89−94 doi: 10.12702/1984-7033.v03n02a01 |
[30] |
Begcy K, Sandhu J, Walia H. 2018. Transient heat stress during early seed development primes germination and seedling establishment in rice. Frontiers in Plant Science 9:1768 doi: 10.3389/fpls.2018.01768 |
[31] |
Weaich K, Bristow KL, Cass A. 1992. Preemergent shoot growth of maize under different drying conditions. Soil Science Society of America Journal 56:1272−78 doi: 10.2136/sssaj1992.03615995005600040044x |
[32] |
Ashraf M, Hafeez M. 2004. Thermotolerance of pearl millet and maize at early growth stages: growth and nutrient relations. Biologia Plantarum 48:81−86 doi: 10.1023/B:BIOP.0000024279.44013.61 |
[33] |
Wahid A, Gelani S, Ashraf M, Foolad M. 2007. Heat tolerance in plants: an overview. Environmental and Experimental Botany 61:199−223 doi: 10.1016/j.envexpbot.2007.05.011 |
[34] |
Hall AE. 1992. Breeding for heat tolerance. In Plant Breeding Reviews, ed. Janick J. vol. 10. US: John Wiley & Sons. pp. 129−68. https://doi.org/10.1002/9780470650011.ch5 |
[35] |
Ebrahim MK, Zingsheim O, El-Shourbagy MN, Moore PH, Komor E. 1998. Growth and sugar storage in sugarcane grown at temperatures below and above optimum. Journal of Plant Physiology 153:593−602 doi: 10.1016/S0176-1617(98)80209-5 |
[36] |
Wilhelm EP, Mullen RE, Keeling PL, Singletary GW. 1999. Heat stress during grain filling in maize: effects on kernel growth and metabolism. Crop Science 39:1733−41 doi: 10.2135/cropsci1999.3961733x |
[37] |
Maestri E, Klueva N, Perrotta C, Gulli M, Nguyen HT, et al. 2002. Molecular genetics of heat tolerance and heat shock proteins in cereals. Plant Molecular Biology 48:667−81 doi: 10.1023/A:1014826730024 |
[38] |
Fahad S, Adnan M, Hassan S, Saud S, Hussain S, et al. 2019. Rice Responses and Tolerance to High Temperature. In Advances in Rice Research for Abiotic Stress Tolerance, eds. Hasanuzzaman M, Fujita M, Nahar K, Biswas J. 1st Edition. Woodhead Publishing. pp. 201−24. https://doi.org/10.1016/B978-0-12-814332-2.00010-1 |
[39] |
Rainey KM, Griffiths PD. 2005. Evaluation of Phaseolus acutifolius A. Gray plant introductions under high temperatures in a controlled environment. Genetic Resources and Crop Evolution 52:117−20 doi: 10.1007/s10722-004-1811-2 |
[40] |
Vara Prasad PV, Craufurd PQ, Summerfield RJ. 1999. Fruit number in relation to pollen production and viability in groundnut exposed to short episodes of heat stress. Annals of Botany 84:381−86 doi: 10.1006/anbo.1999.0926 |
[41] |
Lawson T, Blatt MR. 2014. Stomatal size, speed, and responsiveness impact on photosynthesis and water use efficiency. Plant Physiology 164:1556−70 doi: 10.1104/pp.114.237107 |
[42] |
Zhang JH, Huang WD, Liu YP, Pan QH. 2005. Effects of temperature acclimation pretreatment on the ultrastructure of mesophyll cells in young grape plants (Vitis vinifera L. cv. Jingxiu) under cross-temperature stresses. Journal of Integrative Plant Biology 47:959−70 doi: 10.1111/j.1744-7909.2005.00109.x |
[43] |
Waraich EA, Ahmad R, Halim A, Aziz T. 2012. Alleviation of temperature stress by nutrient management in crop plants: a review. Journal of Soil Science and Plant Nutrition 12(2):221−44 doi: 10.4067/s0718-95162012000200003 |
[44] |
Qadir M, Quillérou E, Nangia V, Murtaza G, Singh M, et al. 2014. Economics of salt-induced land degradation and restoration. Natural Resources Forum 38:282−95 doi: 10.1111/1477-8947.12054 |
[45] |
Volkov V, Beilby MJ. 2017. Editorial: salinity tolerance in plants: mechanisms and regulation of ion transport. Frontiers in Plant Science 8:1795 doi: 10.3389/fpls.2017.01795 |
[46] |
Zhao C, Zhang H, Song C, Zhu JK, Shabala S. 2020. Mechanisms of plant responses and adaptation to soil salinity. The Innovation 1:100017 doi: 10.1016/j.xinn.2020.100017 |
[47] |
Machado R, Serralheiro R. 2017. Soil salinity: effect on vegetable crop growth. management practices to prevent and mitigate soil salinization. Horticulturae 3:30 doi: 10.3390/horticulturae3020030 |
[48] |
Abdul Qados AMS. 2011. Effect of salt stress on plant growth and metabolism of bean plant Vicia faba (L. ). Journal of the Saudi Society of Agricultural Sciences 10:7−15 doi: 10.1016/j.jssas.2010.06.002 |
[49] |
Hnilickova H, Kraus K, Vachova P, Hnilicka F. 2021. Salinity stress affects photosynthesis, malondialdehyde formation, and proline content in Portulaca oleracea L. Plants 10:845 doi: 10.3390/plants10050845 |
[50] |
Rasmuson KE, Anderson JE. 2002. Salinity affects development, growth, and photosynthesis in cheatgrass. Journal of Range Management 55:80−87 doi: 10.2458/azu_jrm_v55i1_rasmuson |
[51] |
Almeida DM, Oliveira MM, Saibo NJM. 2017. Regulation of Na+ and K+ homeostasis in plants: towards improved salt stress tolerance in crop plants. Genetics and Molecular Biology 40:326−45 doi: 10.1590/1678-4685-GMB-2016-0106 |
[52] |
Guo, Huang Z, Li M. 2020. Growth, ionic homeostasis, and physiological responses of cotton under different salt and alkali stresses. Scientific Reports 10:21844 doi: 10.1038/s41598-020-79045-z |
[53] |
Bodner G, Nakhforoosh A, Kaul HP. 2015. Management of crop water under drought: a review. Agronomy for Sustainable Development 35:401−42 doi: 10.1007/s13593-015-0283-4 |
[54] |
Yun Y. 2023. Changes in the growth and yield of an extremely early-maturing rice variety according to transplanting density. Agriculture 13:717 doi: 10.3390/agriculture13030717 |
[55] |
Kang J, Chu Y, Ma G, Zhang Y, Zhang X, et al. 2023. Physiological mechanisms underlying reduced photosynthesis in wheat leaves grown in the field under conditions of nitrogen and water deficiency. The Crop Journal 11:638−50 doi: 10.1016/j.cj.2022.06.010 |
[56] |
Akhtar I, Nazir N. 2013. Effect of waterlogging and drought stress in plants. International Journal of Water Resources and Environmental Engineering 2:34−40 |
[57] |
Franco JA. 2011. Root development under drought stress. Technology and Knowledge Transfer e-Bulletin 2(6):1−3 |
[58] |
Khan MA, Iqbal M, Jameel M, Nazeer W, Shakir S, et al. 2011. Potentials of molecular based breeding to enhance drought tolerance in wheat (Triticum aestivum L.). African Journal of Biotechnology 10:11340−44 |
[59] |
Lisar SYS, Motafakkerazad R, Hossain MM, Rahman IMM. 2012. Water stress in plants: causes, effects and responses. In Water Stress, eds. Rahman IMM, Hasegawa H. London, UK: InTech. pp. 1−16. https://doi.org/10.5772/39363 |
[60] |
Gupta B, Huang B. 2014. Mechanism of salinity tolerance in plants: physiological, biochemical, and molecular characterization. International Journal of Genomics 2014:701596 doi: 10.1155/2014/701596 |
[61] |
Yang X, Lu M, Wang Y, Wang Y, Liu Z, et al. 2021. Response mechanism of plants to drought stress. Horticulturae 7:50 doi: 10.3390/horticulturae7030050 |
[62] |
Ma Y, Dias MC, Freitas H. 2020. Drought and salinity stress responses and microbe-induced tolerance in plants. Frontiers in Plant Science 11:591911 doi: 10.3389/fpls.2020.591911 |
[63] |
Praveen A, Dubey S, Singh S, Sharma VK. 2023. Abiotic stress tolerance in plants: A fascinating action of defense mechanisms. 3 Biotech 13:102 doi: 10.1007/s13205-023-03519-w |
[64] |
Zhang Y, Xu J, Li R, Ge Y, Li Y, et al. 2023. Plants' Response to Abiotic Stress: Mechanisms and Strategies. International Journal of Molecular Sciences 24(13):10915 doi: 10.3390/ijms241310915 |
[65] |
Paul S, Roychoudhury A. 2018. Transgenic plants for improved salinity and drought tolerance. In Biotechnologies of Crop Improvement, eds Gosal S, Wani S. Vol. 2. Cham: Springer. pp. 141−81. https://doi.org/10.1007/978-3-319-90650-8_7 |
[66] |
Saharan BS, Brar B, Duhan JS, Kumar R, Marwaha S, et al. 2022. Molecular and physiological mechanisms to mitigate abiotic stress conditions in plants. Life 12:1634 doi: 10.3390/life12101634 |
[67] |
Singh D, Laxmi A. 2015. Transcriptional regulation of drought response: a tortuous network of transcriptional factors. Frontiers in Plant Science 6:895 doi: 10.3389/fpls.2015.00895 |
[68] |
Bhargava S, Sawant K. 2013. Drought stress adaptation: metabolic adjustment and regulation of gene expression. Plant Breeding 132:21−32 doi: 10.1111/pbr.12004 |
[69] |
Bray EA. 2001. Plant response to water-defi cit stress. In Encyclopedia of Life Sciences. https://doi.org/10.1038/npg.els.0001298 |
[70] |
Nakashima K, Yamaguchi-Shinozaki K, Shinozaki K. 2014. The transcriptional regulatory network in the drought response and its crosstalk in abiotic stress responses including drought, cold, and heat. Frontiers in Plant Science 5:170 doi: 10.3389/fpls.2014.00170 |
[71] |
Xoconostle-Cazares B, Ramirez-Ortega FA, Flores-Elenes L, Ruiz-Medrano R. 2010. Drought tolerance in crop plants. American Journal of Plant Physiology 5:241−56 doi: 10.3923/ajpp.2010.241.256 |
[72] |
Nezhadahmadi A, Prodhan ZH, Faruq G. 2013. Drought tolerance in wheat. The Scientific World Journal 2013:610721 doi: 10.1155/2013/610721 |
[73] |
Rana R, Rehman S, Ahmed J, Bilal M. 2013. A comprehensive overview of recent advances in drought stress tolerance research in wheat (Triticum aestivum L.). Asian Journal of Agriculture and Biology 1:29−37 |
[74] |
Mammadov J, Buyyarapu R, Guttikonda SK, Parliament K, Abdurakhmonov IY, et al. 2018. Wild relatives of maize, rice, cotton, and soybean: treasure troves for tolerance to biotic and abiotic stresses. Frontiers in Plant Science 9:886 doi: 10.3389/fpls.2018.00886 |
[75] |
Cabusora CC, Sigari TA, Niones JM, Chico MV, Ticman HT, et al. 2022. New Rainfed-Drought Rice Variety developed through in Vitro Mutagenesis. Mindanao Journal of Science and Technology 20:1−24 doi: 10.61310/mndjstms.02.22 |
[76] |
Basu S, Ramegowda V, Kumar A, Pereira A. 2016. Plant adaptation to drought stress. F1000Research 5:1554 doi: 10.12688/f1000research.7678.1 |
[77] |
Mottaleb KA, Rejesus RM, Murty MVR, Mohanty S, Li T. 2017. Benefits of the development and dissemination of climate-smart rice: ex ante impact assessment of drought-tolerant rice in South Asia. Mitigation and Adaptation Strategies for Global Change 22:879−901 doi: 10.1007/s11027-016-9705-0 |
[78] |
Dedolph C, Hettel G. 1997. Rice varieties boost yield and improve saline soils. In Partners making a difference. Manila, The Philippines: IRRI. pp. 37. |
[79] |
Senadhira D, Zapata-Arias FJ, Gregorio GB, Alejar MS, de la Cruz HC, et al. 2002. Development of the first salt-tolerant rice cultivar through indica/indica anther culture. Field Crops Research 76:103−10 doi: 10.1016/S0378-4290(02)00032-1 |
[80] |
Singer SD, Laurie JD, Bilichak A, Kumar S, Singh J. 2021. Genetic variation and unintended risk in the context of old and new breeding techniques. Critical Reviews in Plant Sciences 40:68−108 doi: 10.1080/07352689.2021.1883826 |
[81] |
Tai TH, Chun A, Henry IM, Ngo KJ, Burkart-Waco D. 2016. Effectiveness of sodium azide alone compared to sodium azide in combination with methyl nitrosurea for rice mutagenesis. Plant Breeding and Biotechnology 4:453−61 doi: 10.9787/pbb.2016.4.4.453 |
[82] |
Gustafsson A. 1960. Chemical mutagenesis in higher plants. Chemical mutagenesis. Lectures in memory of Erwin Baur I, 1959 organized by the Institute for Research on Cultivated Plants, Gatersleben, of the German Academy of Sciences, Berlin, Boston, Germany, 26–28 July 1959. pp. 14–29. |
[83] |
Oladosu Y, Rafii MY, Abdullah N, Hussin G, Ramli A, et al. 2016. Principle and application of plant mutagenesis in crop improvement: a review. Biotechnology & Biotechnological Equipment 30:1−16 doi: 10.1080/13102818.2015.1087333 |
[84] |
Cabusora CC, Desamero NV, Buluran RD. 2019. Enhanced yield and yield component traits of the mutants derived from rice cv. Samba mahsuri-sub1 and Pokkali through induced mutation. Global Scientific Journals 7(6):649−53 doi: 10.112/gsj.2019.06.23289 |
[85] |
International Atomic Energy Agency (IAEA). 2022. Mutant Variety Database (MVD). www.iaea.org/resources/databases/mutant-varieties-database. |
[86] |
Hwang HH, Yu M, Lai EM. 2017. Agrobacterium-mediated plant transformation: biology and applications. The Arabidopsis Book 15:e0186 doi: 10.1199/tab.0186 |
[87] |
Low LY, Yang SK, Kok DXA, Ong-Abdullah J, Ta N, et al. 2018. Transgenic Plants: Gene constructs, vector and transformation method. In New Visions in Plant Science, ed. Çelik Ö. London: Intech. www.intechopen.com/chapters/63134 (Accessed on Mar 24, 2022) |
[88] |
Shinozaki K, Yamaguchi-Shinozaki K. 2006. Gene networks involved in drought stress response and tolerance. Journal of Experimental Botany 58:221−27 doi: 10.1093/jxb/erl164 |
[89] |
Hahn A, Kilian J, Mohrholz A, Ladwig F, Peschke F, et al. 2013. Plant core environmental stress response genes are systemically coordinated during abiotic stresses. International Journal of Molecular Sciences 14:7617−41 doi: 10.3390/ijms14047617 |
[90] |
Flowers TJ, Flowers SA. 2005. Why does salinity pose such a difficult problem for plant breeders? Agricultural Water Management 78:15−24 doi: 10.1016/j.agwat.2005.04.015 |
[91] |
Kumar K, Kumar M, Kim SR, Ryu H, Cho YG. 2013. Insights into genomics of salt stress response in rice. Rice 6:27 doi: 10.1186/1939-8433-6-27 |
[92] |
Chinnusamy V, Jagendorf A, Zhu JK. 2005. Understanding and improving salt tolerance in plants. Crop Science 45:437−48 doi: 10.2135/cropsci2005.0437 |
[93] |
Yang S, Vanderbeld B, Wan J, Huang Y. 2010. Narrowing down the targets: towards successful genetic engineering of drought-tolerant crops. Molecular Plant 3:469−90 doi: 10.1093/mp/ssq016 |
[94] |
Ribaut JM, Jiang C, Hoisington D. 2002. Simulation experiments on efficiencies of gene introgression by backcrossing. Crop Science 42:557−65 doi: 10.2135/cropsci2002.5570 |
[95] |
Collard BCY, MacKill DJ. 2008. Marker-assisted selection: an approach for precision plant breeding in the twenty-first century. Philosophical Transactions of the Royal Society of London Series B, Biological Sciences 363:557−72 doi: 10.1098/rstb.2007.2170 |
[96] |
Neeraja CN, Maghirang-Rodriguez R, Pamplona A, Heuer S, Collard BCY, et al. 2007. A marker-assisted backcross approach for developing submergence-tolerant rice cultivars. Theoretical and Applied Genetics 115:767−76 doi: 10.1007/s00122-007-0607-0 |
[97] |
Tanksley SD, Young ND, Paterson AH, Bonierbale MW. 1989. RFLP mapping in plant breeding: new tools for an old science. Bio/Technology 7:257−64 doi: 10.1038/nbt0389-257 |
[98] |
Hospital F. 2005. Selection in backcross programmes. Philosophical Transactions of the Royal Society of London Series B, Biological Sciences 360:1503−11 doi: 10.1098/rstb.2005.1670 |
[99] |
Frisch M, Bohn M, Melchinger AE. 1999. Comparison of selection strategies for marker-assisted backcrossing of a gene. Crop Science 39:1295−301 doi: 10.2135/cropsci1999.3951295x |
[100] |
Bailey-Serres J, Fukao T, Ronald P, Ismail A, Heuer S, et al. 2010. Submergence tolerant rice: SUB1's journey from Landrace to modern cultivar. Rice 3:138−47 doi: 10.1007/s12284-010-9048-5 |
[101] |
MacKill DJ, Amante MM, Vergara BS, Sarkarung S. 1993. Improved semidwarf rice lines with tolerance to submergence of seedlings. Crop Science 33:749−53 doi: 10.2135/cropsci1993.0011183x003300040023x |
[102] |
Xu K, MacKill DJ. 1996. A major locus for submergence tolerance mapped on rice chromosome 9. Molecular Breeding 2:219−24 doi: 10.1007/BF00564199 |
[103] |
Xu K, Xu X, Fukao T, Canlas P, Maghirang-Rodriguez R, et al. 2006. Sub1A is an ethylene-response-factor-like gene that confers submergence tolerance to rice. Nature 442:705−8 doi: 10.1038/nature04920 |
[104] |
Septiningsih EM, Pamplona AM, Sanchez DL, Neeraja CN, Vergara GV, et al. 2009. Development of submergence-tolerant rice cultivars: the Sub1 locus and beyond. Annals of Botany 103:151−60 doi: 10.1093/aob/mcn206 |
[105] |
Siangliw M, Toojinda T, Tragoonrung S, Vanavichit A. 2003. Thai jasmine rice carrying QTLch9 (SubQTL) is submergence tolerant. Annals of Botany 91:255−61 doi: 10.1093/aob/mcf123 |
[106] |
Voytas DF. 2013. Plant genome engineering with sequence-specific nucleases. Annual Review of Plant Biology 64:327−50 doi: 10.1146/annurev-arplant-042811-105552 |
[107] |
Mahfouz MM, Piatek A, Stewart CN Jr. 2014. Genome engineering via TALENs and CRISPR/Cas9 systems: challenges and perspectives. Plant Biotechnology Journal 12:1006−14 doi: 10.1111/pbi.12256 |
[108] |
Kumar V, Jain M. 2015. The CRISPR-Cas system for plant genome editing: advances and opportunities. Journal of Experimental Botany 66:47−57 doi: 10.1093/jxb/eru429 |
[109] |
Yang H, Ren S, Yu S, Pan H, Li T, et al. 2020. Methods favoring homology-directed repair choice in response to CRISPR/Cas9 induced-double strand breaks. International Journal of Molecular Sciences 21:6461 doi: 10.3390/ijms21186461 |
[110] |
Perdomo JA, Capó-Bauçà S, Carmo-Silva E, Galmés J. 2017. Rubisco and rubisco activase play an important role in the biochemical limitations of photosynthesis in rice, wheat, and maize under high temperature and water deficit. Frontiers in Plant Science 8:490 doi: 10.3389/fpls.2017.00490 |
[111] |
Zandalinas SI, Balfagón D, Arbona V, Gómez-Cadenas A, Inupakutika MA, et al. 2016. ABA is required for the accumulation of APX1 and MBF1c during a combination of water deficit and heat stress. Journal of Experimental Botany 67:5381−90 doi: 10.1093/jxb/erw299 |
[112] |
Rivero RM, Mestre TC, Mittler R, Rubio F, Garcia-Sanchez F, et al. 2014. The combined effect of salinity and heat reveals a specific physiological, biochemical and molecular response in tomato plants. Plant, Cell & Environment 37:1059−73 doi: 10.1111/pce.12199 |
[113] |
Li N, Han X, Feng D, Yuan D, Huang LJ. 2019. Signaling crosstalk between salicylic acid and ethylene/jasmonate in plant defense: do we understand what they are whispering? International Journal of Molecular Sciences 20:671 doi: 10.3390/ijms20030671 |
[114] |
Takahashi H, Kanayama Y, Zheng MS, Kusano T, Hase S, et al. 2004. Antagonistic interactions between the SA and JA signaling pathways in Arabidopsis modulate expression of defense genes and gene-for-gene resistance to cucumber mosaic virus. Plant and Cell Physiology 45:803−9 doi: 10.1093/pcp/pch085 |
[115] |
Gull A, Ahmad Lone A, Ul Islam Wani N. 2019. Biotic and abiotic stresses in plants. In Abiotic and Biotic Stress in Plants, ed. de Oliveira AB. London, UK: InTech. https://doi.org/10.5772/intechopen.85832 |
[116] |
Pandey P, Irulappan V, Bagavathiannan MV, Senthil-Kumar M. 2017. Impact of combined abiotic and biotic stresses on plant growth and avenues for crop improvement by exploiting physio-morphological traits. Frontiers in Plant Science 8:537 doi: 10.3389/fpls.2017.00537 |
[117] |
Nakamura M, Noguchi K. 2020. Tolerant mechanisms to O2 deficiency under submergence conditions in plants. Journal of Plant Research 133:343−71 doi: 10.1007/s10265-020-01176-1 |
[118] |
Das KK, Sarkar RK, Ismail AM. 2005. Elongation ability and non-structural carbohydrate levels in relation to submergence tolerance in rice. Plant Science 168:131−36 doi: 10.1016/j.plantsci.2004.07.023 |
[119] |
Kaspary TE, Roma-Burgos N, Merotto A Jr. 2020. Snorkeling strategy: tolerance to flooding in rice and potential application for weed management. Genes 11:975 doi: 10.3390/genes11090975 |
[120] |
Anandan A, Kumar Pradhan S, Kumar Das S, Behera L, Sangeetha G. 2015. Differential responses of rice genotypes and physiological mechanism under prolonged deepwater flooding. Field Crops Research 172:153−63 doi: 10.1016/j.fcr.2014.11.007 |
[121] |
Ferreira THS, Tsunada MS, Bassi D, Guidelli GV, Righetto GL, et al. 2017. Sugarcane water stress tolerance mechanisms and its implications on developing biotechnology solutions. Frontiers in Plant Science 8:1077 doi: 10.3389/fpls.2017.01077 |
[122] |
EL Sabagh A, Islam MS, Skalicky M, Ali Raza M, Singh K, et al. 2021. Salinity stress in wheat (Triticum aestivum L.) in the changing climate: adaptation and management strategies. Frontiers in Agronomy 3:661932 doi: 10.3389/fagro.2021.661932 |
[123] |
Arora L, Narula A. 2017. Gene editing and crop improvement using CRISPR-Cas9 system. Frontiers in Plant Science 8:1932 doi: 10.3389/fpls.2017.01932 |