[1] |
Matsumoto T, Wu J, Itoh T, Numa H, Antonio B, et al. 2016. The Nipponbare genome and the next-generation of rice genomics research in Japan. Rice 9:33 doi: 10.1186/s12284-016-0107-4 |
[2] |
Jackson SA. 2016. Rice: The first crop genome. Rice 9:14 doi: 10.1186/s12284-016-0087-4 |
[3] |
Goff SA, Ricke D, Lan TH, Presting G, Wang R, et al. 2002. A draft sequence of the rice genome (Oryza sativa L. ssp. japonica). Science 296:92−100 doi: 10.1126/science.1068275 |
[4] |
International Rice Genome Sequencing P, Sasaki T. 2005. The map-based sequence of the rice genome. Nature 436:793−800 doi: 10.1038/nature03895 |
[5] |
Kawahara Y, de la Bastide M, Hamilton JP, Kanamori H, McCombie WR, et al. 2013. Improvement of the Oryza sativa Nipponbare reference genome using next generation sequence and optical map data. Rice 6:4 doi: 10.1186/1939-8433-6-4 |
[6] |
Nurk S, Koren S, Rhie A, Rautiainen M, Bzikadze AV, et al. 2022. The complete sequence of a human genome. Science 376:44−53 doi: 10.1126/science.abj6987 |
[7] |
Zhao T, Duan Z, Genchev GZ, Lu H. 2020. Closing human reference genome gaps: Identifying and characterizing gap-closing sequences. G3 Genes | Genomes | Genetics 10:2801−9 doi: 10.1534/g3.120.401280 |
[8] |
Chen Q, Lan C, Zhao L, Wang J, Chen B, et al. 2017. Recent advances in sequence assembly: principles and applications. Briefings in Functional Genomics 16:361−78 doi: 10.1093/bfgp/elx006 |
[9] |
Li F, Han Z, Qiao W, Wang J, Song Y, et al. 2021. High-quality genomes and high-density genetic map facilitate the identification of genes from a weedy rice. Frontiers in Plant Science 12:775051 doi: 10.3389/fpls.2021.775051 |
[10] |
Brozynska M, Copetti D, Furtado A, Wing RA, Crayn D, et al. 2017. Sequencing of Australian wild rice genomes reveals ancestral relationships with domesticated rice. Plant Biotechnology Journal 15:765−74 doi: 10.1111/pbi.12674 |
[11] |
Li K, Jiang W, Hui Y, Kong M, Feng LY, et al. 2021. Gapless indica rice genome reveals synergistic contributions of active transposable elements and segmental duplications to rice genome evolution. Molecular Plant 14:1745−56 doi: 10.1016/j.molp.2021.06.017 |
[12] |
Shang L, He W, Wang T, Yang Y, Xu Q, et al. 2023. A complete assembly of the rice Nipponbare reference genome. Molecular Plant 16:1232−36 doi: 10.1016/j.molp.2023.08.003 |
[13] |
Huang X. 2023. A complete telomere-to-telomere assembly provides new reference genome for rice. Molecular Plant 16:1370−72 doi: 10.1016/j.molp.2023.08.007 |
[14] |
Cheng H, Concepcion GT, Feng X, Zhang H, Li H. 2021. Haplotype-resolved de novo assembly using phased assembly graphs with hifiasm. Nature Methods 18:170−75 doi: 10.1038/s41592-020-01056-5 |
[15] |
Zhou C, McCarthy SA, Durbin R. 2023. YaHS: yet another Hi-C scaffolding tool. Bioinformatics 39:btac808 doi: 10.1093/bioinformatics/btac808 |
[16] |
Mikheenko A, Prjibelski A, Saveliev V, Antipov D, Gurevich A. 2018. Versatile genome assembly evaluation with QUAST-LG. Bioinformatics 34:i142−i150 doi: 10.1093/bioinformatics/bty266 |
[17] |
Manni M, Berkeley MR, Seppey M, Zdobnov EM. 2021. BUSCO: Assessing genomic data quality and beyond. Current Protocols 1:e323 doi: 10.1002/cpz1.323 |
[18] |
Ouyang S, Zhu W, Hamilton J, Lin H, Campbell M, et al. 2007. The TIGR Rice Genome Annotation Resource: improvements and new features. Nucleic Acids Research 35:D883−D887 doi: 10.1093/nar/gkl976 |
[19] |
Tarailo-Graovac M, Chen N. 2009. Using RepeatMasker to identify repetitive elements in genomic sequences. Current Protocols in Bioinformatics 25:4.10.1−4.10.14 doi: 10.1002/0471250953.bi0410s25 |
[20] |
Kuznetsov D, Tegenfeldt F, Manni M, Seppey M, Berkeley M, et al. 2023. OrthoDB v11: annotation of orthologs in the widest sampling of organismal diversity. Nucleic Acids Research 51:D445−D451 doi: 10.1093/nar/gkac998 |
[21] |
Kim D, Paggi JM, Park C, Bennett C, Salzberg SL. 2019. Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype. Nature Biotechnology 37:907−15 doi: 10.1038/s41587-019-0201-4 |
[22] |
Brůna T, Hoff KJ, Lomsadze A, Stanke M, Borodovsky M. 2021. BRAKER2: automatic eukaryotic genome annotation with GeneMark-EP+ and AUGUSTUS supported by a protein database. NAR Genomics and Bioinformatics 3:lqaa108 doi: 10.1093/nargab/lqaa108 |
[23] |
OmicsBox – Bioinformatics made easy. 2019. BioBam Bioinformatics (version 2.2.4). www.biobam.com |
[24] |
Chen M, Ma Y, Wu S, Zheng X, Kang H, et al. 2021. Genome Warehouse: A public repository housing genome-scale data. Genomics, Proteomics & Bioinformatics 19:584−89 doi: 10.1016/j.gpb.2021.04.001 |
[25] |
CNCB-NGDC Members and Partners. 2023. Database Resources of the National Genomics Data Center, China National Center for Bioinformation in 2023. Nucleic Acids Research 51:D18−D28 doi: 10.1093/nar/gkac1073 |
[26] |
Li H. 2018. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics 34:3094−100 doi: 10.1093/bioinformatics/bty191 |
[27] |
Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, et al. 2009. The Sequence Alignment/Map format and SAMtools. Bioinformatics 25:2078−79 doi: 10.1093/bioinformatics/btp352 |
[28] |
Goel M, Sun H, Jiao WB, Schneeberger K. 2019. SyRI: finding genomic rearrangements and local sequence differences from whole-genome assemblies. Genome Biology 20:277 doi: 10.1186/s13059-019-1911-0 |