[1]

Petroulakis N, Mattsson MO, Chatziadam P, Simko M, Gavrielides A, et al. 2023. NextGEM: next-generation integrated sensing and analytical system for monitoring and assessing radiofrequency electromagnetic field exposure and health. International Journal of Environmental Research and Public Health 20:6085

doi: 10.3390/ijerph20126085
[2]

Henschenmacher B, Bitsch A, de Las Heras Gala T, Forman HJ, Fragoulis A, et al. 2022. The effect of radiofrequency electromagnetic fields (RF-EMF) on biomarkers of oxidative stress in vivo and in vitro: a protocol for a systematic review. Environment International 158:106932

doi: 10.1016/j.envint.2021.106932
[3]

Cirimele V, Freschi F, Giaccone L, Pichon L, Repetto M. 2017. Human exposure assessment in dynamic inductive power transfer for automotive applications. IEEE Transactions on Magnetics 53:5000304

doi: 10.1109/TMAG.2017.2658955
[4]

Lagorio S, Blettner M, Baaken D, Feychting M, Karipidis K, et al. 2021. The effect of exposure to radiofrequency fields on cancer risk in the general and working population: a protocol for a systematic review of human observational studies. Environment International 157:106828

doi: 10.1016/j.envint.2021.106828
[5]

Romeo S, Zeni O, Sannino A, Lagorio S, Biffoni M, Scarfì MR. 2021. Genotoxicity of radiofrequency electromagnetic fields: protocol for a systematic review of in vitro studies. Environment International 148:106386

doi: 10.1016/j.envint.2021.106386
[6]

Pophof B, Burns J, Danker-Hopfe H, Dorn H, Egblomassé-Roidl C, et al. 2021. The effect of exposure to radiofrequency electromagnetic fields on cognitive performance in human experimental studies: a protocol for a systematic review. Environment International 157:106783

doi: 10.1016/j.envint.2021.106783
[7]

Batool S, Bibi A, Frezza F, Mangini F. 2019. Benefits and hazards of electromagnetic waves, telecommunication, physical and biomedical: a review. European Review for Medical and Pharmacological Sciences 23:3121−28

doi: 10.26355/eurrev_201904_17596
[8]

Sivani S, Sudarsanam D. 2012. Impacts of radio-frequency electromagnetic field (RF-EMF) from cell phone towers and wireless devices on biosystem and ecosystem – a review. Biology and Medicine 4:202−16

[9]

Razek A. 2022. Biological and medical disturbances due to exposure to fields emitted by electromagnetic energy devices—a review. Energies 15:4455

doi: 10.3390/en15124455
[10]

Razek A. 2023. Thermal effects of electromagnetic origin from heating processes to biological disturbances due to field exposure—a review. Thermal Science and Engineering 6:20−33

doi: 10.24294/tse.v6i1.1950
[11]

Ozel HB, Cetin M, Sevik H, Varol T, Isik B, et al. 2021. The effects of base station as an electromagnetic radiation source on flower and cone yield and germination percentage in Pinus brutia Ten. Biologia Futura 72:359−65

doi: 10.1007/s42977-021-00085-1
[12]

Khan MD, Ali S, Azizullah A, Zhu S. 2018. Use of various biomarkers to explore the effects of GSM and GSM-like radiations on flowering plants. Environmental Science and Pollution Research 25:24611−28

doi: 10.1007/s11356-018-2734-3
[13]

Legland D, Guillon F, Devaux MF. 2020. Parametric mapping of cellular morphology in plant tissue sections by gray level granulometry. Plant Methods 16:63

doi: 10.1186/s13007-020-00603-7
[14]

Nayab N, Alam A. 2023. Ecophysiology of ornamental plants responses to environmental stressors and their impacts on pollen physiology and fertilization. Journal of Environmental and Applied Bioresearch 6:1−8

[15]

Liu J, Zhang Y, Niu S, Hao L, Yu W, et al. 2023. Response of dahlia photosynthesis and transpiration to high-temperature stress. Horticulturae 9:1047

doi: 10.3390/horticulturae9091047
[16]

Liu Y, Zhu Z, Wu Y, Gao Y, Zhang L, et al. 2023. A b-box transcription factor CoBBX24 from Camellia oleifera delays leaf senescence and enhances drought tolerance in Arabidopsis. Horticulturae 9:991

doi: 10.3390/horticulturae9090991
[17]

Ren Y, Wang P, Zhang T, Liu W, Wang Y, et al. 2023. Genome-wide identification of Fatty Acyl-CoA Reductase (FAR) genes in Dendrobium catenatum and their response to drought stress. Horticulturae 9:982

doi: 10.3390/horticulturae9090982
[18]

Peng Y, Chen J, Long W, He P, Zhou Q, et al. 2023. Transcriptomic and metabolomic analyses of seedlings of two grape cultivars with distinct tolerance responses to flooding and post-flooding stress conditions. Horticulturae 9:980

doi: 10.3390/horticulturae9090980
[19]

Tran NT, Jokic L, Keller J, Geier JU, Kaldenhoff R. 2023. Impacts of radio-frequency electromagnetic field (RF-EMF) on lettuce (Lactuca sativa)-evidence for RF-EMF interference with plant stress responses. Plants 12:1082

doi: 10.3390/plants12051082
[20]

Pawełek A, Owusu SA, Cecchetti D, Zielińska A, Wyszkowska J. 2022. What evidence exists of crop plants response to exposure to static magnetic and electromagnetic fields? A systematic map protocol Environmental Evidence 11:37

doi: 10.1186/s13750-022-00292-w
[21]

Ayesha S, Abideen Z, Haider G, Zulfiqar F, El-Keblawy A, et al. 2023. Enhancing sustainable plant production and food security: understanding the mechanisms and impacts of electromagnetic fields. Plant Stress 9:100198

doi: 10.1016/j.stress.2023.100198
[22]

Maxwell JC. 1865. VIII. a dynamical theory of the electromagnetic field. Philosophical Transactions of Royal Society 155:459−512

doi: 10.1098/rstl.1865.0008
[23]

Razek A. 2023. Assessment of EMF troubles of biological and instrumental medical questions and analysis of their compliance with standards. Standards 3:227−39

doi: 10.3390/standards3020018
[24]

Nunes AS, Dular P, Chadebec O, Kuo-Peng P. 2018. Subproblems Applied to a 3-D Magnetostatic Facet FEM Formulation. IEEE Transactions on Magnetics 54:7402209

doi: 10.1109/TMAG.2018.2828786
[25]

Li G, Ojeda J, Hoang E, Gabsi M, Lecrivain M. 2012. Thermal–electromagnetic analysis for driving cycles of embedded flux-switching permanent-magnet motors. IEEE Transactions on Vehicular Technology 61:140−51

doi: 10.1109/TVT.2011.2177283
[26]

Piriou F, Razek A. 1990. Numerical simulation of a nonconventional alternator connected to a rectifier. IEEE Transactions on Energy Conversion 5:512−18

doi: 10.1109/60.105275
[27]

Asfirane S, Hlioui S, Mezani S, Amara Y, de La Barrière O, et al. 2019. Scalar magnetic potential interpolation for non-conformal meshing in mesh-based generated reluctance networks. IEEE Transactions on Magnetics 55:7204808

doi: 10.1109/TMAG.2019.2899820
[28]

Ren Z, Razek A. 1990. A coupled electromagnetic-mechanical model for thin conductive plate deflection analysis. IEEE Transactions on Magnetics 26:1650−52

doi: 10.1109/20.104477
[29]

Freschi F, Giaccone L, Cirimele V, Canova A. 2018. Numerical assessment of low-frequency dosimetry from sampled magnetic fields. Physics in Medicine & Biology 63:015029

doi: 10.1088/1361-6560/aa9915
[30]

Li C, Ren Z, Razek A. 1994. An approach to adaptive mesh refinement for three-dimensional eddy-current computations. IEEE Transactions on Magnetics 30:113−17

doi: 10.1109/20.272523
[31]

Ren Z, Razek A. 1996. Computation of 3-D electromagnetic field using differential forms based elements and dual formulations. International Journal of Numerical Modelling 9:81−98

doi: 10.1002/(SICI)1099-1204(199601)9:1/2<81::AID-JNM229>3.0.CO;2-J
[32]

U. S. Food and Drug Administration. 2020. Scientific Evidence for Cell Phone Safety. www.fda.gov/radiation-emitting-products/cell-phones/scientific-evidence-cell-phone-safety (Accessed on 4 January 2024)

[33]

Council of the European Union. 1999. EU Recommendation 1999/519/EC on the Limitation of Exposure of the General Public to Electromagnetic Fields (0 Hz to 300 GHz). https://eur-lex.europa.eu/eli/reco/1999/519/oj (Accessed on 4 January 2024)

[34]

Yang Y, Zeng S, Li X, Hu Z, Zheng J. 2022. Ultrahigh and tunable electromagnetic interference shielding performance of PVDF composite induced by nano-micro cellular structure. Polymers 14:234

doi: 10.3390/polym14020234
[35]

Yao B, Hong W, Chen T, Han Z, Xu X, et al. 2020. Highly stretchable polymer composite with strain-enhanced electromagnetic interference shielding effectiveness. Advanced Materials 32:e1907499

doi: 10.1002/adma.201907499
[36]

Yun T, Kim H, Iqbal A, Cho YS, Lee GS, et al. 2020. Electromagnetic shielding of monolayer MXene assemblies. Advanced Materials 32:e1906769

doi: 10.1002/adma.201906769
[37]

Cheng J, Li C, Xiong Y, Zhang H, Raza H, et al. 2022. Recent advances in design strategies and multifunctionality of flexible electromagnetic interference shielding materials. Nano-Micro Letters 14:80

doi: 10.1007/s40820-022-00823-7
[38]

Mohammad M, Wodajo ET, Choi S, Elbuluk ME. 2019. Modeling and design of passive shield to limit EMF emission and minimize shield loss in unipolar wireless charging system for EV. IEEE Transactions on Power Electronics 34:12235−45

doi: 10.1109/TPEL.2019.2903788
[39]

Canova A, Corti F, Laudani A, Lozito GM, Quercio M. 2023. Innovative shielding technique for wireless power transfer systems. IET Power Electronics Early View

doi: 10.1049/pel2.12580
[40]

Zang Z, Guo Z, Fan X, Han M, Du A, et al. 2022. Assessing the performance of the pilot national parks in China. Ecological Indicators 145:109699

doi: 10.1016/j.ecolind.2022.109699
[41]

Díaz S, Settele J, Brondízio ES, Ngo HT, Agard J, et al. 2019. Pervasive human-driven decline of life on Earth points to the need for transformative change. Science 366:6471

doi: 10.1126/science.aax310
[42]

Coad A, Nightingale P, Stilgoe J, Vezzani A. 2021. Editorial: the dark side of innovation. Industry and Innovation 28:102−12

doi: 10.1080/13662716.2020.1818555