[1]

Voinnet O. 2009. Origin, biogxenesis, and activity of plant microRNAs. Cell 136:669−87

doi: 10.1016/j.cell.2009.01.046
[2]

Song X, Li Y, Cao X, Qi Y. 2019. MicroRNAs and their regulatory roles in plant-environment interactions. Annual Review of Plant Biology 70:489−525

doi: 10.1146/annurev-arplant-050718-100334
[3]

Reinhart BJ, Weinstein EG, Rhoades MW, Bartel B, Bartel DP. 2002. MicroRNAs in plants. Genes & Development 16:1616−26

doi: 10.1101/gad.1004402
[4]

Kozomara A, Griffiths-Jones S. 2011. miRBase: integrating microRNA annotation and deep-sequencing data. Nucleic Acids Research 39:D152−D157

doi: 10.1093/nar/gkq1027
[5]

Wang H, Wang H. 2015. The miR156/SPL module, a regulatory hub and versatile toolbox, gears up crops for enhanced agronomic traits. Molecular Plant 8:677−88

doi: 10.1016/j.molp.2015.01.008
[6]

Wang C, Wang Q, Zhu X, Cui M, Jia H, et al. 2019. Characterization on the conservation and diversification of miRNA156 gene family from lower to higher plant species based on phylogenetic analysis at the whole genomic level. Functional & Integrative Genomics 19:933−52

doi: 10.1007/s10142-019-00679-y
[7]

Chuck G, Cigan AM, Saeteurn K, Hake S. 2007. The heterochronic maize mutant Corngrass1 results from overexpression of a tandem microRNA. Nature Genetics 39:544−49

doi: 10.1038/ng2001
[8]

Yang L, Conway SR, Poethig RS. 2011. Vegetative phase change is mediated by a leaf-derived signal that represses the transcription of miR156. Development 138:245−49

doi: 10.1242/dev.058578
[9]

Zhang L, Song J, Lin R, Tang M, Shao S, et al. 2022. Tomato SlMYB15 transcription factor targeted by sly-miR156e-3p positively regulates ABA-mediated cold tolerance. Journal of Experimental Botany 73:7538−51

doi: 10.1093/jxb/erac370
[10]

Zhao D, Xia X, Wei M, Sun J, Meng J, et al. 2017. Overexpression of herbaceous peony miR156e-3p improves anthocyanin accumulation in transgenic Arabidopsis thaliana lateral branches. 3 Biotech 7:379

doi: 10.1007/s13205-017-1011-3
[11]

Li A, Mao L. 2007. Evolution of plant microRNA gene families. Cell Research 17:212−18

doi: 10.1038/sj.cr.7310113
[12]

Lin D, Zhu X, Qi B, Gao Z, Tian P, et al. 2022. SlMIR164A regulates fruit ripening and quality by controlling SlNAM2 and SlNAM3 in tomato. Plant Biotechnology Journal 20:1456−69

doi: 10.1111/pbi.13824
[13]

Gupta SK, Vishwakarma A, Kenea HD, Galsurker O, Cohen H, et al. 2021. CRISPR/Cas9 mutants of tomato MICRORNA164 genes uncover their functional specialization in development. Plant Physiology 187:1636−52

doi: 10.1093/plphys/kiab376
[14]

Klein J, Saedler H, Huijser P. 1996. A new family of DNA binding proteins includes putative transcriptional regulators of the Antirrhinum majus floral meristem identity gene SQUAMOSA. Molecular and General Genetics 250:7−16

doi: 10.1007/BF02191820
[15]

Wang S, Yang A, Wang H, Xu Y. 2021. Identification and expression analysis of miR156/miR157-SPL pathway genes in cucumber. Acta Horticulturae Sinica 48:2227−38

doi: 10.16420/j.issn.0513-353x.2020-0952
[16]

Hong Z, Wang X, Fan Z, Wang J, Yang A, et al. 2013. The intrinsic developmental age signal defines an age-dependent climbing behavior in cucumber. Horticultural Plant Journal In press

doi: 10.1016/j.hpj.2023.04.010
[17]

Xing S, Salinas M, Höhmann S, Berndtgen R, Huijser P. 2010. miR156-targeted and nontargeted SBP-box transcription factors act in concert to secure male fertility in Arabidopsis. The Plant Cell 22:3935−50

doi: 10.1105/tpc.110.079343
[18]

Zhang S, Ling L. 2014. Genome-wide identification and evolutionary analysis of the SBP-box gene family in castor bean. PLoS One 9:e86688

doi: 10.1371/journal.pone.0086688
[19]

Jia X, Chen Y, Xu X, Shen F, Zheng Q, et al. 2017. miR156 switches on vegetative phase change under the regulation of redox signals in apple seedlings. Scientific Reports 7:14223

doi: 10.1038/s41598-017-14671-8
[20]

Cui L, Zheng F, Wang J, Zhang C, Xiao F, et al. 2020. miR156a-targeted SBP-Box transcription factor SlSPL13 regulates inflorescence morphogenesis by directly activating SFT in tomato. Plant Biotechnology Journal 18:1670−82

doi: 10.1111/pbi.13331
[21]

Manning K, Tör M, Poole M, Hong Y, Thompson AJ, et al. 2006. A naturally occurring epigenetic mutation in a gene encoding an SBP-box transcription factor inhibits tomato fruit ripening. Nature Genetics 38:948−52

doi: 10.1038/ng1841
[22]

Poethig RS. 2013. Chapter Five - Vegetative phase change and shoot maturation in plants. Current Topics in Developmental Biology 105:125−52

doi: 10.1016/B978-0-12-396968-2.00005-1
[23]

Wu G, Poethig RS. 2006. Temporal regulation of shoot development in Arabidopsis thaliana by miR156 and its target SPL3. Development 133:3539−47

doi: 10.1242/dev.02521
[24]

Ahsan MU, Hayward A, Powell R, Wilkie J, Beveridge C, et al. 2018. MicroRNA control of flowering and annual crop cycle in tropical/subtropical horticultural. Acta Horticulturae 1205:681−86

doi: 10.17660/ActaHortic.2018.1205.84
[25]

Li H, Luo Y, Ma B, Hu J, Lv Z, et al. 2021. Hierarchical action of mulberry miR156 in the vegetative phase transition. International Journal of Molecular Sciences 22:5550

doi: 10.3390/ijms22115550
[26]

Zhu F, Wang S, Xue J, Li D, Ren X, et al. 2018. Morphological and physiological changes, and the functional analysis of PdSPL9 in the juvenile-to-adult phase transition of paeonia delavayi. Plant Cell, Tissue and Organ Culture 133:325−37

doi: 10.1007/s11240-018-1384-y
[27]

Zheng J, Ma Y, Zhang M, Lyu M, Yuan Y, et al. 2019. Expression pattern of FT/TFL1 and miR156-targeted SPL genes associated with developmental stages in Dendrobium catenatum. International Journal of Molecular Sciences 20:2725

doi: 10.3390/ijms20112725
[28]

Chen Y, Zhao M, Wang X, Cui J, Ge W, et al. 2022. Key microRNAs and target genes involved in regulating maturation in Lilium. Ornamental Plant Research 2:9

doi: 10.48130/OPR-2022-0009
[29]

Wang Y, Wu F, Bai J, He Y. 2014. BrpSPL9 (Brassica rapa ssp. pekinensis SPL9) controls the earliness of heading time in Chinese cabbage. Plant Biotechnology Journal 12:312−21

doi: 10.1111/pbi.12138
[30]

Wu G, Park MY, Conway SR, Wang J, Weigel D, et al. 2009. The sequential action of miR156 and miR172 regulates developmental timing in Arabidopsis. Cell 138:750−59

doi: 10.1016/j.cell.2009.06.031
[31]

Goebel K. 1889. Ueber die jungendzustände der Pflanzen. Flora oder Allgemeine Botanische Zeitung 72:1−45

[32]

Costa MMR, Yang S, Critchley J, Feng X, Wilson Y, et al. 2012. The genetic basis for natural variation in heteroblasty in Antirrhinum. New Phytologist 196:1251−59

doi: 10.1111/j.1469-8137.2012.04347.x
[33]

Tang H, Wang J, Wang L, Shang G, Xu Z, et al. 2023. Anisotropic cell growth at the leaf base promotes age-related changes in leaf shape in Arabidopsis thaliana. The Plant Cell 35:1386−407

doi: 10.1093/plcell/koad031
[34]

Pasquet-Kok J, Creese C, Sack L. 2010. Turning over a new 'leaf': multiple functional significances of leaves versus phyllodes in Hawaiian Acacia koa. Plant, Cell & Environment 33:2084−100

doi: 10.1111/j.1365-3040.2010.02207.x
[35]

Silva PO, Batista DS, Cavalcanti JHF, Koehler AD, Vieira LM, et al. 2019. Leaf heteroblasty in Passiflora edulis as revealed by metabolic profiling and expression analyses of the microRNAs miR156 and miR172. Annals of Botany 123:1191−203

doi: 10.1093/aob/mcz025
[36]

Vendemiatti E, Zsögön A, Silva GFFE, de Jesus FA, Cutri L, et al. 2017. Loss of type-IV glandular trichomes is a heterochronic trait in tomato and can be reverted by promoting juvenility. Plant Science 259:35−47

doi: 10.1016/j.plantsci.2017.03.006
[37]

Teotia S, Tang G. 2015. To bloom or not to bloom: role of microRNAs in plant flowering. Molecular Plant 8:359−77

doi: 10.1016/j.molp.2014.12.018
[38]

Hyun Y, Richter R, Coupland G. 2017. Competence to flower: age-controlled sensitivity to environmental cues. Plant Physiology 173:36−46

doi: 10.1104/pp.16.01523
[39]

Wang J, Czech B, Weigel D. 2009. miR156-regulated SPL transcription factors define an endogenous flowering pathway in Arabidopsis thaliana. Cell 138:738−49

doi: 10.1016/j.cell.2009.06.014
[40]

Lian H, Wang L, Ma N, Zhou C, Han L, et al. 2021. Redundant and specific roles of individual MIR172 genes in plant development. PLoS Biology 19:e3001044

doi: 10.1371/journal.pbio.3001044
[41]

Xie K, Wu C, Xiong L. 2006. Genomic organization, differential expression, and interaction of SQUAMOSA promoter-binding-like transcription factors and microRNA156 in rice. Plant Physiology 142:280−93

doi: 10.1104/pp.106.084475
[42]

Wei Q, Ma C, Xu Y, Wang T, Chen Y, et al. 2017. Control of chrysanthemum flowering through integration with an aging pathway. Nature Communications 8:829

doi: 10.1038/s41467-017-00812-0
[43]

Zhou Q, Shi J, Li Z, Zhang S, Zhang S, et al. 2021. miR156/157 targets SPLs to regulate flowering transition, plant architecture and flower organ size in petunia. Plant and Cell Physiology 62:839−57

doi: 10.1093/pcp/pcab041
[44]

Tanaka N. 2012. Gibberellin is not a regulator of miR156 in rice juvenile-adult phase change. Rice 5:25

doi: 10.1186/1939-8433-5-25
[45]

Li X, Guo F, Ma S, Zhu M, Pan W, et al. 2019. Regulation of flowering time via miR172-mediated APETALA2-like expression in ornamental gloxinia (Sinningia speciosa). Journal of Zhejiang University-SCIENCE B 20:322−31

doi: 10.1631/jzus.B1800003
[46]

Yamaguchi A, Wu M, Yang L, Wu G, Poethig RS, et al. 2009. The microRNA-regulated SBP-Box transcription factor SPL3 is a direct upstream activator of LEAFY, FRUITFULL, and APETALA1. Developmental Cell 17:268−78

doi: 10.1016/j.devcel.2009.06.007
[47]

Kim JJ, Lee JH, Kim W, Jung HS, Huijser P, et al. 2012. The microRNA156-SQUAMOSA PROMOTER BINDING PROTEIN-LIKE3 module regulates ambient temperature-responsive flowering via FLOWERING LOCUS T in Arabidopsis. Plant Physiology 159:461−78

doi: 10.1104/pp.111.192369
[48]

Silva GFF, Silva EM, Correa JPO, Vicente MH, Jiang N, et al. 2019. Tomato floral induction and flower development are orchestrated by the interplay between gibberellin and two unrelated microRNA-controlled modules. New Phytologist 221:1328−44

doi: 10.1111/nph.15492
[49]

Xiao Q, Su Z, Chen H, Shen J. 2019. Genome-wide identification and involvement of litchi SPL genes in flowering in response to cold and leaf maturity. The Journal of Horticultural Science and Biotechnology 94:428−40

doi: 10.1080/14620316.2018.1543557
[50]

Jung JH, Lee S, Yun J, Lee M, Park CM. 2014. The miR172 target TOE3 represses AGAMOUS expression during Arabidopsis floral patterning. Plant Science 215−216:29−38

doi: 10.1016/j.plantsci.2013.10.010
[51]

Li X, Li J, Fan Z, Liu Z, Tanaka T, et al. 2017. Global gene expression defines faded whorl specification of double flower domestication in Camellia. Scientific Reports 7:3197

doi: 10.1038/s41598-017-03575-2
[52]

Gou JY, Felippes FF, Liu CJ, Weigel D, Wang JW. 2011. Negative regulation of anthocyanin biosynthesis in Arabidopsis by a miR156-targeted SPL transcription factor. The Plant Cell 23:1512−22

doi: 10.1105/tpc.111.084525
[53]

Zhao D, Wei M, Shi M, Hao Z, Tao J. 2017. Identification and comparative profiling of miRNAs in herbaceous peony (Paeonia lactiflora Pall.) with red/yellow bicoloured flowers. Scientific Reports 7:44926

doi: 10.1038/srep44926
[54]

Kellenberger RT, Ponraj U, Delahaie B, Fattorini R, Balk J, et al. 2023. Multiple gene co-options underlie the rapid evolution of sexually deceptive flowers in Gorteria diffusa. Current Biology 33:1502−1512.e8

doi: 10.1016/j.cub.2023.03.003
[55]

Li W, He Z, Zhang L, Lu Z, Xu J, et al. 2017. miRNAs involved in the development and differentiation of fertile and sterile flowers in Viburnum macrocephalum f. keteleeri. BMC Genomics 18:783

doi: 10.1186/s12864-017-4180-x
[56]

Yang F, Zhu G, Wang Z, Liu H, Xu Q, et al. 2017. Integrated mRNA and microRNA transcriptome variations in the multi-tepal mutant provide insights into the floral patterning of the orchid Cymbidium goeringii. BMC Genomics 18:367

doi: 10.1186/s12864-017-3756-9
[57]

Wang S, Wu K, Yuan Q, Liu X, Liu Z, et al. 2012. Control of grain size, shape and quality by OsSPL16 in rice. Nature Genetics 44:950−54

doi: 10.1038/ng.2327
[58]

Bi F, Meng X, Ma C, Yi G. 2015. Identification of miRNAs involved in fruit ripening in Cavendish bananas by deep sequencing. BMC Genomics 16:776

doi: 10.1186/s12864-015-1995-1
[59]

Zhang X, Zou Z, Zhang J, Zhang Y, Han Q, et al. 2011. Over-expression of sly-miR156a in tomato results in multiple vegetative and reproductive trait alterations and partial phenocopy of the sft mutant. FEBS Letters 585:435−39

doi: 10.1016/j.febslet.2010.12.036
[60]

Silva GFFE, Silva EM, da Silva Azevedo M, Guivin MAC, Ramiro DA, et al. 2014. microRNA156-targeted SPL/SBP box transcription factors regulate tomato ovary and fruit development. The Plant Journal 78:604−18

doi: 10.1111/tpj.12493
[61]

Bhogale S, Mahajan AS, Natarajan B, Rajabhoj M, Thulasiram HV, et al. 2014. MicroRNA156: a potential graft-transmissible microRNA that modulates plant architecture and tuberization in Solanum tuberosum ssp. andigena. Plant Physiology 164:1011−27

doi: 10.1104/pp.113.230714
[62]

Martin A, Adam H, Díaz-Mendoza M, Żurczak M, González-Schain ND, et al. 2009. Graft-transmissible induction of potato tuberization by the microRNA miR172. Development 136:2873−81

doi: 10.1242/dev.031658
[63]

Qian M, Ni J, Niu Q, Bai S, Bao L, et al. 2017. Response of miR156-SPL module during the red peel coloration of nagging-treated Chinese sand pear (Pyrus pyrifolia Nakai). Frontiers in Physiology 8:550

doi: 10.3389/fphys.2017.00550
[64]

Li X, Hou Y, Xie X, Li H, Li X, et al. 2020. A blueberry MIR156a-SPL12 module coordinates the accumulation of chlorophylls and anthocyanins during fruit ripening. Journal of Experimental Botany 71:5976−89

doi: 10.1093/jxb/eraa327
[65]

Wang B, Wang J, Wang C, Shen W, Jia H, et al. 2016. Study on expression modes and cleavage role of miR156b/c/d and its target gene Vv-SPL9 during the whole growth stage of grapevine. Journal of Heredity 107:626−34

doi: 10.1093/jhered/esw030
[66]

Liu R, Lai B, Hu B, Qin Y, Hu G, et al. 2016. Identification of microRNAs and their target genes related to the accumulation of anthocyanins in Litchi chinensis by high-throughput sequencing and degradome analysis. Frontiers in Plant Science 7:2059

doi: 10.3389/fpls.2016.02059
[67]

Zhou H, Lin-Wang K, Wang H, Gu C, Dare AP, et al. 2015. Molecular genetics of blood-fleshed peach reveals activation of anthocyanin biosynthesis by NAC transcription factors. The Plant Journal 82:105−21

doi: 10.1111/tpj.12792
[68]

Zhao S, Mi X, Guo R, Xia X, Liu L, et al. 2020. The biosynthesis of main taste compounds is coordinately regulated by miRNAs and phytohormones in tea plant (Camellia sinensis). Journal of Agricultural and Food Chemistry 68:6221−36

doi: 10.1021/acs.jafc.0c01833
[69]

Fan K, Fan D, Ding Z, Su Y, Wang X. 2015. Cs-miR156 is involved in the nitrogen form regulation of catechins accumulation in tea plant (Camellia sinensis L.). Plant Physiology and Biochemistry 97:350−60

doi: 10.1016/j.plaphy.2015.10.026
[70]

Yu Z, Wang L, Zhao B, Shan C, Zhang Y, et al. 2015. Progressive regulation of sesquiterpene biosynthesis in Arabidopsis and Patchouli (Pogostemon cablin) by the miR156-targeted SPL transcription factors. Molecular Plant 8:98−110

doi: 10.1016/j.molp.2014.11.002
[71]

Price PW. 1991. The plant vigor hypothesis and herbivore attack. Oikos 62:244−51

doi: 10.2307/3545270
[72]

Kus JV, Zaton K, Sarkar R, Cameron RK. 2002. Age-related resistance in Arabidopsis is a developmentally regulated defense response to Pseudomonas syringae. The Plant Cell 14:479−90

doi: 10.1105/tpc.010481
[73]

Mao Y, Liu Y, Chen D, Chen F, Fang X, et al. 2017. Jasmonate response decay and defense metabolite accumulation contributes to age-regulated dynamics of plant insect resistance. Nature Communications 8:13925

doi: 10.1038/ncomms13925
[74]

Zhang Q, Zhang Y, Wang S, Hao L, Wang S, et al. 2019. Characterization of genome-wide microRNAs and their roles in development and biotic stress in pear. Planta 249:693−707

doi: 10.1007/s00425-018-3027-2
[75]

Li L, Jin H, Liu S, Zou J, Li T. 2020. Expression analysis of miRNA with tomato JA deficient mutant response to Botrytis cinerea infection. Acta Horticulturae Sinica 47:1323−34

doi: 10.16420/j.issn.0513-353x.2020-0162
[76]

Jeyaraj A, Elango T, Yu Y, Chen X, Zou Z, et al. 2021. Impact of exogenous caffeine on regulatory networks of microRNAs in response to Colletotrichum gloeosporioides in tea plant. Scientia Horticulturae 279:109914

doi: 10.1016/j.scienta.2021.109914
[77]

Jeyaraj A, Wang X, Wang S, Liu S, Zhang R, et al. 2019. Identification of regulatory networks of microRNAs and their targets in response to Colletotrichum gloeosporioides in tea plant (Camellia sinensis L.). Frontiers in Plant Science 10:1096

doi: 10.3389/fpls.2019.01096
[78]

Hao F, Yang G, Zhou H, Yao J, Liu D, et al. 2021. Genome-wide identification and transcriptional expression profiles of transcription factor WRKY in common walnut (Juglans regia L.). Genes 12:1444

doi: 10.3390/genes12091444
[79]

Pinweha N, Netrphan S, Sojikul P, Viboonjun U, Sae-Lim P, et al. 2022. Cross-kingdom microRNA transfer for the control of the anthracnose disease in cassava. Tropical Plant Pathology 47:362−77

doi: 10.1007/s40858-022-00503-2
[80]

Ge Y, Han J, Zhou G, Xu Y, Ding Y, et al. 2018. Silencing of miR156 confers enhanced resistance to brown planthopper in rice. Planta 248:813−26

doi: 10.1007/s00425-018-2942-6
[81]

Li H, Ma B, Luo Y, Wei W, Yuan J, et al. 2022. The mulberry SPL gene family and the response of MnSPL7 to silkworm herbivory through activating the transcription of MnTT2L2 in the catechin biosynthesis pathway. International Journal of Molecular Sciences 23:1141

doi: 10.3390/ijms23031141
[82]

Leichty AR, Poethig RS. 2019. Development and evolution of age-dependent defenses in ant-acacias. Proceedings of the National Academy of Sciences of the United States of America 116:15596−601

doi: 10.1073/pnas.190064411
[83]

Yang Y, Zhang X, Su Y, Zou J, Wang Z, et al. 2017. miRNA alteration is an important mechanism in sugarcane response to low-temperature environment. BMC Genomics 18:833

doi: 10.1186/s12864-017-4231-3
[84]

Zhu H, Zhang Y, Tang R, Qu H, Duan X, et al. 2019. Banana sRNAome and degradome identify microRNAs functioning in differential responses to temperature stress. BMC Genomics 20:33

doi: 10.1186/s12864-018-5395-1
[85]

Ahmed W, Xia Y, Zhang H, Li R, Bai G, et al. 2019. Identification of conserved and novel miRNAs responsive to heat stress in flowering Chinese cabbage using high-throughput sequencing. Scientific Reports 9:14922

doi: 10.1038/s41598-019-51443-y
[86]

Visentin I, Pagliarani C, Deva E, Caracci A, Turečková V, et al. 2020. A novel strigolactone-miR156 module controls stomatal behaviour during drought recovery. Plant, Cell & Environment 43:1613−24

doi: 10.1111/pce.13758
[87]

Niu C, Li H, Jiang L, Yan M, Li C, et al. 2019. Genome-wide identification of drought-responsive microRNAs in two sets of Malus from interspecific hybrid progenies. Horticulture Research 6:75

doi: 10.1038/s41438-019-0157-z
[88]

Stief A, Altmann S, Hoffmann K, Pant BD, Scheible WR, et al. 2014. Arabidopsi miR156s regulates tolerance to recurring environmental stress through SPL transcription factors. The Plant Cell 26:1792−807

doi: 10.1105/tpc.114.123851
[89]

Matthews C, Arshad M, Hannoufa A. 2019. Alfalfa response to heat stress is modulated by microRNA156. Physiologia Plantarum 165:830−42

doi: 10.1111/ppl.12787
[90]

Cui L, Shan J, Shi M, Gao J, Lin H. 2014. The miR156-SPL9-DFR pathway coordinates the relationship between development and abiotic stress tolerance in plants. The Plant Journal 80:1108−17

doi: 10.1111/tpj.12712
[91]

Feyissa BA, Arshad M, Gruber MY, Kohalmi SE, Hannoufa A. 2019. The interplay between miR156/SPL13 and DFR/WD40-1 regulate drought tolerance in alfalfa. BMC Plant Biology 19:434

doi: 10.1186/s12870-019-2059-5
[92]

Chen G, Wang Y, Liu X, Duan S, Jiang S, et al. 2023. The MdmiR156n regulates drought tolerance and flavonoid synthesis in Apple calli and Arabidopsis. International Journal of Molecular Sciences 24:6049

doi: 10.3390/ijms24076049
[93]

Ma Y, Xue H, Zhang F, Jiang Q, Yang S, et al. 2021. The miR156/SPL module regulates apple salt stress tolerance by activating MdWRKY100 expression. Plant Biotechnology Journal 19:311−23

doi: 10.1111/pbi.13464
[94]

Huo HQ, Wei SH, Bradford KJ. 2016. DELAY OF GERMINATION1 (DOG1) regulates both seed dormancy and flowering time through microRNA pathways. Proceedings of the National Academy of Sciences of the United States of America 113:E2199−E2206

doi: 10.1073/pnas.1600558113
[95]

Miao C, Wang Z, Zhang L, Yao J, Hua K, et al. 2019. The grain yield modulator miR156 regulates seed dormancy through the gibberellin pathway in rice. Nature Communications 10:3822

doi: 10.1038/s41467-019-11830-5
[96]

Liu M, Shi Z, Zhang X, Wang M, Zhang L, et al. 2019. Inducible overexpression of Ideal Plant Architecture1 improves both yield and disease resistance in rice. Nature Plants 5:389−400

doi: 10.1038/s41477-019-0383-2
[97]

Siddiqui ZH, Abbas ZK, Ansari MW, Khan MN. 2019. The role of miRNA in somatic embryogenesis. Genomics 111:1026−33

doi: 10.1016/j.ygeno.2018.11.022
[98]

Long J, Liu C, Feng M, Liu Y, Wu X, et al. 2018. miR156-SPL modules regulate induction of somatic embryogenesis in citrus callus. Journal of Experimental Botany 69:2979−93

doi: 10.1093/jxb/ery132
[99]

Liu M, Wu X, Long J, Guo W. 2017. Genomic characterization of miR156 and SQUAMOSA promoter binding protein-like genes in sweet orange (Citrus sinensis). Plant Cell, Tissue and Organ Culture 130:103−16

doi: 10.1007/s11240-017-1207-6
[100]

Feng M, Lu M, Long J, Yin Z, Jiang N, et al. 2022. miR156 regulates somatic embryogenesis by modulating starch accumulation in citrus. Journal of Experimental Botany 73:6170−85

doi: 10.1093/jxb/erac248
[101]

Luo H, Yang J, Feng Y, Zhang H, Liu S, et al. 2021. The effect of stu-miR156 silencing by STTM technology on potato lateral root development. Acta Horticulturae Sinica 48:531−38

doi: 10.16420/j.issn.0513-353x.2020-0230
[102]

Tang W, Zhao Y, Zeng J, Li Z, Fu Z, et al. 2022. Integration of small RNA and transcriptome sequencing reveal the roles of miR395 and ATP sulfurylase in developing seeds of Chinese kale. Frontiers in Plant Science 12:778848

doi: 10.3389/fpls.2021.778848
[103]

Santos LS, Maximiano MR, Megias E, Pappas M, Ribeiro SG, et al. 2019. Quantitative expression of microRNAs in Brassica oleracea infected with Xanthomonas campestris pv. campestris. Molecular Biology Reports 46:3523−29

doi: 10.1007/s11033-019-04779-7
[104]

Chen C, Liu C, Jiang A, Zhao Q, Zhang Y, et al. 2020. miRNA and degradome sequencing identify miRNAs and their target genes involved in the browning inhibition of fresh-cut apples by hydrogen sulfide. Journal of Agricultural and Food Chemistry 68:8462−70

doi: 10.1021/acs.jafc.0c02473
[105]

Xu X, Li X, Hu X, Wu T, Wang Y, et al. 2017. High miR156 expression is required for auxin-induced adventitious root formation via MxSPL26 independent of PINs and ARFs in Malus xiaojinensis. Frontiers in Plant Science 8:1059

doi: 10.3389/fpls.2017.01059
[106]

Cui M, Wang C, Zhang W, Pervaiz T, Haider MS, et al. 2018. Characterization of Vv-miR156: Vv-SPL pairs involved in the modulation of grape berry development and ripening. Molecular Genetics and Genomics 293:1333−54

doi: 10.1007/s00438-018-1462-1
[107]

Wang C, Zhang Y, Fang J, Song C, Liu H, et al. 2012. Spatiotemporal expression of microRNA156b and microRNA172c and their target genes during flower development of winter buds growing on cut-back treated shoots of grapevine. Journal of Nanjing Agricultural University 35:59−64

[108]

Yamane H, Mimura S, Tao R. 2018. Precocious flowering of Citrus seedlings and expression analysis of FT/TFL1 family genes and miR156/172 involved in vegetative phase transition. II Asian Horticultural Congress, Chengdu, 2016:25−30

[109]

Tan J, Yi X, Luo L, Yu C, Wang J, et al. 2021. RNA-seq and sRNA-seq analysis in lateral buds and leaves of juvenile and adult roses. Scientia Horticulturae 290:110513

doi: 10.1016/j.scienta.2021.110513
[110]

Yu R, Xiong Z, Zhu X, Feng P, Hu Z, et al. 2023. RcSPL1–RcTAF15b regulates the flowering time of rose (Rosa chinensis). Horticulture Research 10:uhad083

doi: 10.1093/hr/uhad083
[111]

Fan G, Cao X, Niu S, Deng M, Zhao Z, et al. 2015. Transcriptome, microRNA, and degradome analyses of the gene expression of Paulownia with phytoplamsa. BMC Genomics 16:896

doi: 10.1186/s12864-015-2074-3
[112]

Yu S, Cao L, Zhou C, Zhang T, Lian H, et al. 2013. Sugar is an endogenous cue for juvenile-to-adult phase transition in plants. eLife 2:e00269

doi: 10.7554/eLife.00269
[113]

Yang L, Xu M, Koo Y, He J, Poethig RS. 2013. Sugar promotes vegetative phase change in Arabidopsis thaliana by repressing the expression of MIR156A and MIR156C. eLife 2:e00260

doi: 10.7554/eLife.00260
[114]

Liu Y, Bai Y, Li N, Li M, Liu W, et al. 2022. HEXOKINASE1 forms a nuclear complex with the PRC2 subunits CURLY LEAF and SWINGER to regulate glucose signaling. Journal of Integrative Plant Biology 64:1168−80

doi: 10.1111/jipb.13261
[115]

Xu M, Hu T, Smith MR, Poethig RS. 2016. Epigenetic regulation of vegetative phase change in Arabidopsis. The Plant Cell 28:28−41

doi: 10.1105/tpc.15.00854
[116]

Xu Y, Guo C, Zhou B, Li C, Wang H, et al. 2016. Regulation of vegetative phase change by SWI2/SNF2 chromatin remodeling ATPase BRAHMA. Plant Physiology 172:2416−28

doi: 10.1104/pp.16.01588
[117]

Wahl V, Ponnu J, Schlereth A, Arrivault S, Langenecker T, et al. 2013. Regulation of flowering by trehalose-6-phosphate signaling in Arabidopsis thaliana. Science 339:704−07

doi: 10.1126/science.1230406
[118]

Ponnu J, Schlereth A, Zacharaki V, Działo MA, Abel C, et al. 2020. The trehalose 6-phosphate pathway impacts vegetative phase change in Arabidopsis thaliana. The Plant Journal 104:768−80

doi: 10.1111/tpj.14965
[119]

Zhang Q, Zhang M, Zhao Y, Hu H, Huang Y, et al. 2022. Identification of trehalose-6-phosphate synthase (TPS)-coding genes involved in flowering induction of Lilium × formolongi. Plant Physiology and Biochemistry 171:84−94

doi: 10.1016/j.plaphy.2021.12.025
[120]

Langens-Gerrits M, De Klerk GJ, Croes A. 2003. Phase change in lily bulblets regenerated in vitro. Physiologia Plantarum 119:590−97

doi: 10.1046/j.1399-3054.2003.00214.x
[121]

Liu J, Cheng X, Liu P, Sun J. 2017. miR156-targeted SBP-box transcription factors interact with DWARF53 to regulate TEOSINTE BRANCHED1 and BARREN STALK1 expression in bread wheat. Plant Physiology 174:1931−48

doi: 10.1104/pp.17.00445
[122]

Liu Y, Wu G, Zhao Y, Wang HH, Dai Z, et al. 2021. DWARF53 interacts with transcription factors UB2/UB3/TSH4 to regulate maize tillering and tassel branching. Plant Physiology 187:947−62

doi: 10.1093/plphys/kiab259
[123]

Wang J. 2014. Regulation of flowering time by the miR156-mediated age pathway. Journal of Experimental Botany 65:4723−30

doi: 10.1093/jxb/eru246
[124]

Bergonzi S, Albani MC, Ver Loren van Themaat E, Nordström KJV, Wang R, et al. 2013. Mechanisms of age-dependent response to winter temperature in perennial flowering of Arabis alpina. Science 340:1094−97

doi: 10.1126/science.1234116
[125]

Franco-Zorrilla JM, Valli A, Todesco M, Mateos I, Puga MI, et al. 2007. Target mimicry provides a new mechanism for regulation of microRNA activity. Nature Genetics 39:1033−37

doi: 10.1038/ng2079
[126]

Todesco M, Rubio-Somoza I, Paz-Ares J, Weigel D. 2010. A collection of target mimics for comprehensive analysis of microRNA function in Arabidopsis thaliana. PLoS Genetics 6:e1001031

doi: 10.1371/journal.pgen.1001031
[127]

Yan J, Gu Y, Jia X, Kang W, Pan S, et al. 2012. Effective small RNA destruction by the expression of a short tandem target mimic in Arabidopsis. The Plant Cell 24:415−27

doi: 10.1105/tpc.111.094144
[128]

Bortesi L, Fischer R. 2015. The CRISPR/Cas9 system for plant genome editing and beyond. Biotechnology Advances 33:41−52

doi: 10.1016/j.biotechadv.2014.12.006