[1]

Chen S, Wang P, Kong W, Chai K, Zhang S, et al. 2023. Gene mining and genomics-assisted breeding empowered by the pangenome of tea plant Camellia sinensis. Nature Plants 9:1986−99

doi: 10.1038/s41477-023-01565-z
[2]

Pastoriza S, Mesías M, Cabrera C, Rufián-Henares JA. 2017. Healthy properties of green and white teas: an update. Food & Function 8:2650−62

doi: 10.1039/C7FO00611J
[3]

Wan XC, Xia T. (Eds.) 2015. Secondary metabolism of tea plant. 1st Edition. Beijing: Science Press.

[4]

Yang Z, Dong F, Baldermann S, Murata A, Tu Y, et al. 2012. Isolation and identification of spermidine derivatives in tea (Camellia sinensis) flowers and their distribution in floral organs. Journal of the Science of Food and Agriculture 92:2128−32

doi: 10.1002/jsfa.5596
[5]

Zhao J, Li P, Xia T, Wan X. 2020. Exploring plant metabolic genomics: chemical diversity, metabolic complexity in the biosynthesis and transport of specialized metabolites with the tea plant as a model. Critical Reviews in Biotechnology 40:667−88

doi: 10.1080/07388551.2020.1752617
[6]

Winkel-Shirley B. 2001. Flavonoid biosynthesis. A colorful model for genetics, biochemistry, cell biology, and biotechnology. Plant Physiology 126:485−93

doi: 10.1104/pp.126.2.485
[7]

Li CF, Zhu Y, Yu Y, Zhao QY, Wang SJ, et al. 2015. Global transcriptome and gene regulation network for secondary metabolite biosynthesis of tea plant (Camellia sinensis). BMC Genomics 16:560

doi: 10.1186/s12864-015-1773-0
[8]

Xia EH, Zhang HB, Sheng J, Li K, Zhang QJ, et al. 2017. The tea tree genome provides insights into tea flavor and independent evolution of caffeine biosynthesis. Molecular Plant 10:866−77

doi: 10.1016/j.molp.2017.04.002
[9]

Wei C, Yang H, Wang S, Zhao J, Liu C, et al. 2018. Draft genome sequence of Camellia sinensis var. sinensis provides insights into the evolution of the tea genome and tea quality. Proceedings of the National Academy of Sciences of the United States of America 115(18):E4151−E4158

doi: 10.1073/pnas.1719622115
[10]

Yu X, Xiao J, Chen S, Yu Y, Ma J, et al. 2020. Metabolite signatures of diverse Camellia sinensis tea populations. Nature Communications 11:5586

doi: 10.1038/s41467-020-19441-1
[11]

Jiang X, Liu Y, Li W, Zhao L, Meng F, et al. 2013. Tissue-specific, development-dependent phenolic compounds accumulation profile and gene expression pattern in tea plant [Camellia sinensis]. PLoS One 8:e62315

doi: 10.1371/journal.pone.0062315
[12]

Zhuang J, Dai X, Zhu M, Zhang S, Dai Q, et al. 2020. Evaluation of astringent taste of green tea through mass spectrometry-based targeted metabolic profiling of polyphenols. Food Chemistry 305:125507

doi: 10.1016/j.foodchem.2019.125507
[13]

Narukawa M, Kimata H, Noga C, Watanabe T. 2010. Taste characterisation of green tea catechins. International Journal of Food Science & Technology 45:1579−85

doi: 10.1111/j.1365-2621.2010.02304.x
[14]

Yu P, Yeo ASL, Low MY, Zhou W. 2014. Identifying key non-volatile compounds in ready-to-drink green tea and their impact on taste profile. Food Chemistry 155:9−16

doi: 10.1016/j.foodchem.2014.01.046
[15]

Cui L, Yao S, Dai X, Yin Q, Liu Y, et al. 2016. Identification of UDP-glycosyltransferases involved in the biosynthesis of astringent taste compounds in tea (Camellia sinensis). Journal of Experimental Botany 67:2285−97

doi: 10.1093/jxb/erw053
[16]

Zhao X, Wang P, Li M, Wang Y, Jiang X, et al. 2017. Functional Characterization of a New Tea (Camellia sinensis) Flavonoid Glycosyltransferase. Journal of Agricultural and Food Chemistry 65:2074−83

doi: 10.1021/acs.jafc.6b05619
[17]

Zhao X, Dai X, Gao L, Guo L, Zhuang J, et al. 2017. Functional analysis of an uridine diphosphate glycosyltransferase involved in the biosynthesis of polyphenolic glucoside in tea plants (Camellia sinensis). Journal of Agricultural and Food Chemistry 65:10993−1001

doi: 10.1021/acs.jafc.7b04969
[18]

Zhao X, Zhang Y, Long T, Wang S, Yang J. 2022. Regulation Mechanism of Plant Pigments Biosynthesis: Anthocyanins, Carotenoids, and Betalains. Metabolites 12:871

doi: 10.3390/metabo12090871
[19]

Li MY, Liu HY, Wu DT, Kenaan A, Geng F, et al. 2022. L-Theanine: A Unique Functional Amino Acid in Tea ( Camellia sinensis L.) With Multiple Health Benefits and Food Applications . Frontiers in Nutrition 9:853846

doi: 10.3389/fnut.2022.853846
[20]

Lin S, Chen Z, Chen T, Deng W, Wan X, et al. 2023. Theanine metabolism and transport in tea plants (Camellia sinensis L.): advances and perspectives. Critical Reviews in Biotechnology 43:327−41

doi: 10.1080/07388551.2022.2036692
[21]

Kottawa-Arachchi JD, Gunasekare MTK, Ranatunga MAB. 2019. Biochemical diversity of global tea [Camellia sinensis (L.) O. Kuntze] germplasm and its exploitation: a review. Genetic Resources and Crop Evolution 66:259−73

[22]

Wan X, Xia T. 2015. Secondary metabolism of tea plant: theanine metabolism. Beijing, China: Science Press. pp. 88–102.

[23]

Cabrera C, Artacho R, Giménez R. 2006. Beneficial effects of green tea-a review. Journal of the American College of Nutrition 25(2):79−99

doi: 10.1080/07315724.2006.10719518
[24]

Rogers PJ, Smith JE, Heatherley SV, Pleydell-Pearce CW. 2008. Time for tea: mood, blood pressure and cognitive performance effects of caffeine and theanine administered alone and together. Psychopharmacology 195:569−77

doi: 10.1007/s00213-007-0938-1
[25]

Vuong QV, Bowyer MC, Roach PD. 2011. L-Theanine: properties, synthesis and isolation from tea. Journal of the Science of Food and Agriculture 91:1931−39

doi: 10.1002/jsfa.4373
[26]

Huang R, Wang JY, Yao MZ, Ma CL, Chen L. 2022. Quantitative trait loci mapping for free amino acid content using an albino population and SNP markers provides insight into the genetic improvement of tea plants. Horticulture Research 9:uhab029

doi: 10.1093/hr/uhab029
[27]

Wan X. 2003. Tea biochemistry. Beijing: China Agriculture Press. pp. 91–105.

[28]

Sakato Y. 1950. The chemical constituents of tea: III. a new amide theanine. .Nippon Nogkagaku Kaishi 23:262−67

doi: 10.1271/nogeikagaku1924.23.262
[29]

Huang FF, Yang PD, Bai SL, Liu ZH, Li J, et al. 2024. Lipids: A noteworthy role in better tea quality. Food Chemistry 431:137071

doi: 10.1016/j.foodchem.2023.137071
[30]

Ho CT, Zheng X, Li S. 2015. Tea aroma formation. Food Science and Human Wellness 4(1):9−27

doi: 10.1016/j.fshw.2015.04.001
[31]

Mumtaz F, Zubair M, Khan F, Niaz K. 2020. Analysis of plants lipids. In Recent Advances in Natural Products Analysis, eds. Sanches Silva A, Nabavi SF, Saeedi M, Nabavi SM. Amsterdam, Netherlands: Elsevier. pp. 677–705. https://doi.org/10.1016/B978-0-12-816455-6.00022-6

[32]

Liu MY, Burgos A, Ma L, Zhang Q, Tang D, et al. 2017. Lipidomics analysis unravels the effect of nitrogen fertilization on lipid metabolism in tea plant (Camellia sinensis L.). BMC Plant Biology 17(1):165

doi: 10.1186/s12870-017-1111-6
[33]

Chen L, Apostolides Z. Chen ZM. 2012. Global Tea Breeding: Achievements Challenges and Perspectives. Hangzhou, China: Springer - Zhejiang University Press.

[34]

Zhao X, Li P, Zuo H, Peng A, Lin J, et al. 2023. CsMYBL2 homologs modulate the light and temperature stress-regulated anthocyanin and catechins biosynthesis in tea plants (Camellia sinensis). The Plant Journal 115:1051−70

doi: 10.1111/tpj.16279
[35]

Li F, Deng X, Huang Z, Zhao Z, Li C, et al. 2023. Integrated transcriptome and metabolome provide insights into flavonoid biosynthesis in 'P113', a new purple tea of Camellia tachangensis . Beverage Plant Research 3:3

doi: 10.48130/bpr-2023-0003
[36]

Xu YX, Yang L, Lei YS, Ju RN, Miao SG, et al. 2022. Integrated transcriptome and amino acid profile analyses reveal novel insights into differential accumulation of theanine in green and yellow tea cultivars. Tree Physiology 42:1501−16

doi: 10.1093/treephys/tpac016
[37]

Xu P, Su H, Jin R, Mao Y, Xu A, et al. 2020. Shading Effects on Leaf Color Conversion and Biosynthesis of the Major Secondary Metabolites in the Albino Tea Cultivar "Yujinxiang". Journal of Agricultural and Food Chemistry 68:2528−38

doi: 10.1021/acs.jafc.9b08212
[38]

Zheng Y, Wang P, Chen X, Yue C, Guo Y, et al. 2021. Integrated transcriptomics and metabolomics provide novel insight into changes in specialized metabolites in an albino tea cultivar (Camellia sinensis (L.) O. Kuntz). Plant Physiology and Biochemistry 160:27−36

doi: 10.1016/j.plaphy.2020.12.029
[39]

Wang J, Zhang T, Shen X, Liu J, Zhao D, et al. 2016. Serum metabolomics for early diagnosis of esophageal squamous cell carcinoma by UHPLC-QTOF/MS. Metabolomics 12:116

doi: 10.1007/s11306-016-1050-5
[40]

Lai J, Li C, Zhang Y, Wu Z, Li W, et al. 2023. Integrated transcriptomic and metabolomic analyses reveal the molecular and metabolic basis of flavonoids in Areca catechu L . Journal of Agricultural and Food Chemistry 71:4851−62

doi: 10.1021/acs.jafc.2c08864
[41]

Zhang L, Cui D, Ma X, Han B, Han L. 2023. Comparative analysis of rice reveals insights into the mechanism of colored rice via widely targeted metabolomics. Food Chemistry 399:133926

doi: 10.1016/j.foodchem.2022.133926
[42]

Zhang Y, Wang L, Kong X, Chen Z, Zhong S, et al. 2024. Integrated analysis of metabolome and transcriptome revealed different regulatory networks of metabolic flux in tea plants [Camellia sinensis (L.) O. Kuntze] with varied leaf colors. International Journal of Molecular Sciences 25:242

doi: 10.3390/ijms25010242