[1]
|
Chen S, Wang P, Kong W, Chai K, Zhang S, et al. 2023. Gene mining and genomics-assisted breeding empowered by the pangenome of tea plant Camellia sinensis. Nature Plants 9:1986−99 doi: 10.1038/s41477-023-01565-z
CrossRef Google Scholar
|
[2]
|
Pastoriza S, Mesías M, Cabrera C, Rufián-Henares JA. 2017. Healthy properties of green and white teas: an update. Food & Function 8:2650−62 doi: 10.1039/C7FO00611J
CrossRef Google Scholar
|
[3]
|
Wan XC, Xia T. (Eds.) 2015. Secondary metabolism of tea plant. 1st Edition. Beijing: Science Press.
|
[4]
|
Yang Z, Dong F, Baldermann S, Murata A, Tu Y, et al. 2012. Isolation and identification of spermidine derivatives in tea (Camellia sinensis) flowers and their distribution in floral organs. Journal of the Science of Food and Agriculture 92:2128−32 doi: 10.1002/jsfa.5596
CrossRef Google Scholar
|
[5]
|
Zhao J, Li P, Xia T, Wan X. 2020. Exploring plant metabolic genomics: chemical diversity, metabolic complexity in the biosynthesis and transport of specialized metabolites with the tea plant as a model. Critical Reviews in Biotechnology 40:667−88 doi: 10.1080/07388551.2020.1752617
CrossRef Google Scholar
|
[6]
|
Winkel-Shirley B. 2001. Flavonoid biosynthesis. A colorful model for genetics, biochemistry, cell biology, and biotechnology. Plant Physiology 126:485−93 doi: 10.1104/pp.126.2.485
CrossRef Google Scholar
|
[7]
|
Li CF, Zhu Y, Yu Y, Zhao QY, Wang SJ, et al. 2015. Global transcriptome and gene regulation network for secondary metabolite biosynthesis of tea plant (Camellia sinensis). BMC Genomics 16:560 doi: 10.1186/s12864-015-1773-0
CrossRef Google Scholar
|
[8]
|
Xia EH, Zhang HB, Sheng J, Li K, Zhang QJ, et al. 2017. The tea tree genome provides insights into tea flavor and independent evolution of caffeine biosynthesis. Molecular Plant 10:866−77 doi: 10.1016/j.molp.2017.04.002
CrossRef Google Scholar
|
[9]
|
Wei C, Yang H, Wang S, Zhao J, Liu C, et al. 2018. Draft genome sequence of Camellia sinensis var. sinensis provides insights into the evolution of the tea genome and tea quality. Proceedings of the National Academy of Sciences of the United States of America 115(18):E4151−E4158 doi: 10.1073/pnas.1719622115
CrossRef Google Scholar
|
[10]
|
Yu X, Xiao J, Chen S, Yu Y, Ma J, et al. 2020. Metabolite signatures of diverse Camellia sinensis tea populations. Nature Communications 11:5586 doi: 10.1038/s41467-020-19441-1
CrossRef Google Scholar
|
[11]
|
Jiang X, Liu Y, Li W, Zhao L, Meng F, et al. 2013. Tissue-specific, development-dependent phenolic compounds accumulation profile and gene expression pattern in tea plant [Camellia sinensis]. PLoS One 8:e62315 doi: 10.1371/journal.pone.0062315
CrossRef Google Scholar
|
[12]
|
Zhuang J, Dai X, Zhu M, Zhang S, Dai Q, et al. 2020. Evaluation of astringent taste of green tea through mass spectrometry-based targeted metabolic profiling of polyphenols. Food Chemistry 305:125507 doi: 10.1016/j.foodchem.2019.125507
CrossRef Google Scholar
|
[13]
|
Narukawa M, Kimata H, Noga C, Watanabe T. 2010. Taste characterisation of green tea catechins. International Journal of Food Science & Technology 45:1579−85 doi: 10.1111/j.1365-2621.2010.02304.x
CrossRef Google Scholar
|
[14]
|
Yu P, Yeo ASL, Low MY, Zhou W. 2014. Identifying key non-volatile compounds in ready-to-drink green tea and their impact on taste profile. Food Chemistry 155:9−16 doi: 10.1016/j.foodchem.2014.01.046
CrossRef Google Scholar
|
[15]
|
Cui L, Yao S, Dai X, Yin Q, Liu Y, et al. 2016. Identification of UDP-glycosyltransferases involved in the biosynthesis of astringent taste compounds in tea (Camellia sinensis). Journal of Experimental Botany 67:2285−97 doi: 10.1093/jxb/erw053
CrossRef Google Scholar
|
[16]
|
Zhao X, Wang P, Li M, Wang Y, Jiang X, et al. 2017. Functional Characterization of a New Tea (Camellia sinensis) Flavonoid Glycosyltransferase. Journal of Agricultural and Food Chemistry 65:2074−83 doi: 10.1021/acs.jafc.6b05619
CrossRef Google Scholar
|
[17]
|
Zhao X, Dai X, Gao L, Guo L, Zhuang J, et al. 2017. Functional analysis of an uridine diphosphate glycosyltransferase involved in the biosynthesis of polyphenolic glucoside in tea plants (Camellia sinensis). Journal of Agricultural and Food Chemistry 65:10993−1001 doi: 10.1021/acs.jafc.7b04969
CrossRef Google Scholar
|
[18]
|
Zhao X, Zhang Y, Long T, Wang S, Yang J. 2022. Regulation Mechanism of Plant Pigments Biosynthesis: Anthocyanins, Carotenoids, and Betalains. Metabolites 12:871 doi: 10.3390/metabo12090871
CrossRef Google Scholar
|
[19]
|
Li MY, Liu HY, Wu DT, Kenaan A, Geng F, et al. 2022. L-Theanine: A Unique Functional Amino Acid in Tea ( Camellia sinensis L.) With Multiple Health Benefits and Food Applications . Frontiers in Nutrition 9:853846 doi: 10.3389/fnut.2022.853846
CrossRef Google Scholar
|
[20]
|
Lin S, Chen Z, Chen T, Deng W, Wan X, et al. 2023. Theanine metabolism and transport in tea plants (Camellia sinensis L.): advances and perspectives. Critical Reviews in Biotechnology 43:327−41 doi: 10.1080/07388551.2022.2036692
CrossRef Google Scholar
|
[21]
|
Kottawa-Arachchi JD, Gunasekare MTK, Ranatunga MAB. 2019. Biochemical diversity of global tea [Camellia sinensis (L.) O. Kuntze] germplasm and its exploitation: a review. Genetic Resources and Crop Evolution 66:259−73
Google Scholar
|
[22]
|
Wan X, Xia T. 2015. Secondary metabolism of tea plant: theanine metabolism. Beijing, China: Science Press. pp. 88–102.
|
[23]
|
Cabrera C, Artacho R, Giménez R. 2006. Beneficial effects of green tea-a review. Journal of the American College of Nutrition 25(2):79−99 doi: 10.1080/07315724.2006.10719518
CrossRef Google Scholar
|
[24]
|
Rogers PJ, Smith JE, Heatherley SV, Pleydell-Pearce CW. 2008. Time for tea: mood, blood pressure and cognitive performance effects of caffeine and theanine administered alone and together. Psychopharmacology 195:569−77 doi: 10.1007/s00213-007-0938-1
CrossRef Google Scholar
|
[25]
|
Vuong QV, Bowyer MC, Roach PD. 2011. L-Theanine: properties, synthesis and isolation from tea. Journal of the Science of Food and Agriculture 91:1931−39 doi: 10.1002/jsfa.4373
CrossRef Google Scholar
|
[26]
|
Huang R, Wang JY, Yao MZ, Ma CL, Chen L. 2022. Quantitative trait loci mapping for free amino acid content using an albino population and SNP markers provides insight into the genetic improvement of tea plants. Horticulture Research 9:uhab029 doi: 10.1093/hr/uhab029
CrossRef Google Scholar
|
[27]
|
Wan X. 2003. Tea biochemistry. Beijing: China Agriculture Press. pp. 91–105.
|
[28]
|
Sakato Y. 1950. The chemical constituents of tea: III. a new amide theanine. .Nippon Nogkagaku Kaishi 23:262−67 doi: 10.1271/nogeikagaku1924.23.262
CrossRef Google Scholar
|
[29]
|
Huang FF, Yang PD, Bai SL, Liu ZH, Li J, et al. 2024. Lipids: A noteworthy role in better tea quality. Food Chemistry 431:137071 doi: 10.1016/j.foodchem.2023.137071
CrossRef Google Scholar
|
[30]
|
Ho CT, Zheng X, Li S. 2015. Tea aroma formation. Food Science and Human Wellness 4(1):9−27 doi: 10.1016/j.fshw.2015.04.001
CrossRef Google Scholar
|
[31]
|
Mumtaz F, Zubair M, Khan F, Niaz K. 2020. Analysis of plants lipids. In Recent Advances in Natural Products Analysis, eds. Sanches Silva A, Nabavi SF, Saeedi M, Nabavi SM. Amsterdam, Netherlands: Elsevier. pp. 677–705. https://doi.org/10.1016/B978-0-12-816455-6.00022-6
|
[32]
|
Liu MY, Burgos A, Ma L, Zhang Q, Tang D, et al. 2017. Lipidomics analysis unravels the effect of nitrogen fertilization on lipid metabolism in tea plant (Camellia sinensis L.). BMC Plant Biology 17(1):165 doi: 10.1186/s12870-017-1111-6
CrossRef Google Scholar
|
[33]
|
Chen L, Apostolides Z. Chen ZM. 2012. Global Tea Breeding: Achievements Challenges and Perspectives. Hangzhou, China: Springer - Zhejiang University Press.
|
[34]
|
Zhao X, Li P, Zuo H, Peng A, Lin J, et al. 2023. CsMYBL2 homologs modulate the light and temperature stress-regulated anthocyanin and catechins biosynthesis in tea plants (Camellia sinensis). The Plant Journal 115:1051−70 doi: 10.1111/tpj.16279
CrossRef Google Scholar
|
[35]
|
Li F, Deng X, Huang Z, Zhao Z, Li C, et al. 2023. Integrated transcriptome and metabolome provide insights into flavonoid biosynthesis in 'P113', a new purple tea of Camellia tachangensis . Beverage Plant Research 3:3 doi: 10.48130/bpr-2023-0003
CrossRef Google Scholar
|
[36]
|
Xu YX, Yang L, Lei YS, Ju RN, Miao SG, et al. 2022. Integrated transcriptome and amino acid profile analyses reveal novel insights into differential accumulation of theanine in green and yellow tea cultivars. Tree Physiology 42:1501−16 doi: 10.1093/treephys/tpac016
CrossRef Google Scholar
|
[37]
|
Xu P, Su H, Jin R, Mao Y, Xu A, et al. 2020. Shading Effects on Leaf Color Conversion and Biosynthesis of the Major Secondary Metabolites in the Albino Tea Cultivar "Yujinxiang". Journal of Agricultural and Food Chemistry 68:2528−38 doi: 10.1021/acs.jafc.9b08212
CrossRef Google Scholar
|
[38]
|
Zheng Y, Wang P, Chen X, Yue C, Guo Y, et al. 2021. Integrated transcriptomics and metabolomics provide novel insight into changes in specialized metabolites in an albino tea cultivar (Camellia sinensis (L.) O. Kuntz). Plant Physiology and Biochemistry 160:27−36 doi: 10.1016/j.plaphy.2020.12.029
CrossRef Google Scholar
|
[39]
|
Wang J, Zhang T, Shen X, Liu J, Zhao D, et al. 2016. Serum metabolomics for early diagnosis of esophageal squamous cell carcinoma by UHPLC-QTOF/MS. Metabolomics 12:116 doi: 10.1007/s11306-016-1050-5
CrossRef Google Scholar
|
[40]
|
Lai J, Li C, Zhang Y, Wu Z, Li W, et al. 2023. Integrated transcriptomic and metabolomic analyses reveal the molecular and metabolic basis of flavonoids in Areca catechu L . Journal of Agricultural and Food Chemistry 71:4851−62 doi: 10.1021/acs.jafc.2c08864
CrossRef Google Scholar
|
[41]
|
Zhang L, Cui D, Ma X, Han B, Han L. 2023. Comparative analysis of rice reveals insights into the mechanism of colored rice via widely targeted metabolomics. Food Chemistry 399:133926 doi: 10.1016/j.foodchem.2022.133926
CrossRef Google Scholar
|
[42]
|
Zhang Y, Wang L, Kong X, Chen Z, Zhong S, et al. 2024. Integrated analysis of metabolome and transcriptome revealed different regulatory networks of metabolic flux in tea plants [Camellia sinensis (L.) O. Kuntze] with varied leaf colors. International Journal of Molecular Sciences 25:242 doi: 10.3390/ijms25010242
CrossRef Google Scholar
|