[1]

Abebe BK, Alemayehu MT. 2022. A review of the nutritional use of cowpea (Vigna unguiculata L. Walp) for human and animal diets. Journal of Agriculture and Food Research 10:100383

doi: 10.1016/j.jafr.2022.100383
[2]

Sudharani Y, Mohapatra PP, Pramanik K, Maitra S. 2018. Effect of different phosphorous level on growth and yield of cowpea (Vigna unguiculata L.) genotypes. International Journal of Management, Technology and Engineering 8:2876−80

[3]

Dhakal A. 2020. Present status of grain legumes production in Nepal. Food & Agribusiness Managemen 2:6−9

doi: 10.26480/fabm.01.2021.06.09
[4]

Bhattarai C, Marasini D, Dawadi P, Aryal S. 2017. Evaluation of performances of cowpea (Vigna ungiculata) genotypes in agronomy farm of Lamjung Campus. International Journal of Applied Sciences and Biotechnology 5:382−85

doi: 10.3126/ijasbt.v5i3.18125
[5]

Ministry for Agriculture and Livestock Development (MOALD). 2018. Statistical information on Nepalese agriculture. Report. MOALD, Kathmandu, Nepal. pp. 1-250.

[6]

Ghimire S, Neupane S, Tharu RK. 2023. Comparative study on the seed health of five commonly cultivated wheat varieties (Triticum aestivum L.) in Nepal. AgroEnvironmental Sustainability 1(1):3−11

doi: 10.59983/s2023010102
[7]

Ghimire S, Dhami D, Shrestha A, Budhathoki J, Maharjan M, et al. 2023. Effectiveness of different combinations of urea and vermicompost on yield of bitter gourd (Momordica charantia). Heliyon 9:e18663

doi: 10.1016/j.heliyon.2023.e18663
[8]

Sainju UM, Ghimire R, Pradhan GP. 2019. Nitrogen Fertilization I: Impact on crop, soil, and environment. In Nitrogen Fixation, eds. Rigobelo EC, Serra AP. London, United Kingdom: IntechOpen. vol. 9. pp. 69−90. https://doi.org/10.5772/intechopen.86028

[9]

Delwiche CC, Wijler J. 1956. Non-symbiotic nitrogen fixation in soil. Plant and Soil 7:113−29

doi: 10.1007/BF01343722
[10]

Fasusi OA, Cruz C, Babalola OO. 2021. Agricultural sustainability: microbial biofertilizers in rhizosphere management. Agriculture 11:163

doi: 10.3390/agriculture11020163
[11]

Natasha Muchemwa M, Kalaluka M, Mick M, Kelvin K, Tamala K, et al. 2022. Situational analyses on cowpea value chain in Zambia: the case of an untapped legume. Cogent Food & Agriculture 8:2094060

doi: 10.1080/23311932.2022.2094060
[12]

Kebede E, Bekeko Z. 2020. Expounding the production and importance of cowpea (Vigna unguiculata (L.) Walp.) in Ethiopia. Cogent Food & Agriculture 6:1769805

doi: 10.1080/23311932.2020.1769805
[13]

Zeng Q, Ding X, Wang J, Han X, Iqbal HMN, et al. 2022. Insight into soil nitrogen and phosphorus availability and agricultural sustainability by plant growth-promoting rhizobacteria. Environmental Science and Pollution Research 29:45089−106

doi: 10.1007/s11356-022-20399-4
[14]

Gautam K, Sirohi C, Singh NR, Thakur Y, Jatav SS, et al. 2021. Microbial biofertilizer: Types, applications, and current challenges for sustainable agricultural production. In Biofertilizers, eds. Rakshit A, Meena VS, Parihar M, Singh HB, Singh AK. UK: Woodhead Publishing. pp. 3–19. https://doi.org/10.1016/B978-0-12-821667-5.00014-2.

[15]

Kour D, Rana KL, Kaur T, Yadav N, Halder SK, et al. 2020. Potassium solubilizing and mobilizing microbes: Biodiversity, mechanisms of solubilization, and biotechnological implication for alleviations of abiotic stress. In New and Future Developments in Microbial Biotechnology and Bioengineering, eds. Rastegari AA, Yadav AN, Yadav N. Netherlands: Elsevier. pp. 177–202. https://doi.org/10.1016/B978-0-12-820526-6.00012-9.

[16]

Vassilev N, Vassileva M, Lopez A, Martos V, Reyes A, et al. 2015. Unexploited potential of some biotechnological techniques for biofertilizer production and formulation. Applied Microbiology and Biotechnology 99:4983−96

doi: 10.1007/s00253-015-6656-4
[17]

Kumar S, Diksha, Sindhu SS, Kumar R. 2022. Biofertilizers: An ecofriendly technology for nutrient recycling and environmental sustainability. Current Research in Microbial Sciences 3:100094

doi: 10.1016/j.crmicr.2021.100094
[18]

Alkurtany AES, Ali SAM, Mahdi WM. 2018. The efficiency of prepared biofertilizer from local isolate of bradyrhizobium sp on growth and yield of mungbean plant. Iraqi journal of agricultural sciences 49(5):722−30

doi: 10.36103/ijas.v49i5.22
[19]

Mondal M, Skalicky M, Garai S, Hossain A, Sarkar S, et al. 2020. Supplementing Nitrogen in Combination with Rhizobium Inoculation and Soil Mulch in Peanut (Arachis hypogaea L.) Production System: Part I. Effects on Productivity, Soil Moisture, and Nutrient Dynamics. Agronomy 10:1582

doi: 10.3390/agronomy10101582
[20]

Javaid A. 2009. Arbuscular Mycorrhizal Mediated Nutrition in Plants. Journal of Plant Nutrition 32:1595−618

doi: 10.1080/01904160903150875
[21]

Ghimire S, Chhetri BP. 2023. Menace of tomato leaf miner (Tuta absoluta [Meyrick, 1917]): Its Impacts and Control Measures by Nepalese Farmers. AgroEnvironmental Sustainability 1:37−47

doi: 10.59983/s2023010106
[22]

Ahmad F, Saeed Q, Shah SMU, Gondal MA, Mumtaz S. 2022. Environmental sustainability: Challenges and approaches. In Natural Resources Conservation and Advances for Sustainability, eds. Jhariya MA, Meena RS, Banerjee A, Meena SN. Netherlands: Elsevier. pp. 243–70. https://doi.org/10.1016/B978-0-12-822976-7.00019-3.

[23]

Trivedi P, Mattupalli C, Eversole K, Leach JE. 2021. Enabling sustainable agriculture through understanding and enhancement of microbiomes. New Phytologist 230:2129−47

doi: 10.1111/nph.17319
[24]

Ghimire S, Chhetri BP. 2023. Climate resilience agriculture: innovations and best practices for sustainable farming. 1st Edition. Republic of Moldova: Eliva Press. www.elivapress.com/pl/book/book-1912848825/

[25]

Bremner JM, Hauck RD. 1982. Advances in methodology for research on nitrogen transformations in soils. In Agronomy Monographs, ed. Stevenson FJ. Madison, WI, USA: American Society of Agronomy, Crop Science Society of America, Soil Science Society of America. pp. 467–502. https://doi.org/10.2134/agronmonogr22.c13

[26]

Watanabe FS, Olsen SR. 1965. Test of an ascorbic acid method for determining phosphorus in water and NaHCO3 extracts from soil. Soil Science Society of America Journal 29:677−78

doi: 10.2136/sssaj1965.03615995002900060025x
[27]

Houba J, van Der Lee J, Novozamsky I, Walinga I. 1989. Soil and plants analysis part 5, Soil Analysis Procedures. Wageningen: Wageningen University.

[28]

Brockwell J, Bottomley PJ. 1995. Recent advances in inoculant technology and prospects for the future. Soil Biology and Biochemistry 27:683−97

doi: 10.1016/0038-0717(95)98649-9
[29]

Stephens JHG, Rask HM. 2000. Inoculant production and formulation. Field Crops Research 65:249−58

doi: 10.1016/S0378-4290(99)00090-8
[30]

Pandey Y, Gautam D, Thapa R, Sharma M, Paudyal K. 2012. Effect of different organic manures and bio-fertilizers on bush-type french bean (Phaseolous vulgaris L.) genotypes. Proceedings of fourth SAS-N Convention, Lalitpur, Nepal, 4–6 April 2012. Nepal: Society of Agricultural Scientists (SAS-N). pp. 366–72. https://elibrary.narc.gov.np/pages/view.php?ref=1695&k=

[31]

Jayshree, Umesha C. 2021. Effect of biofertilizers and phosphorus on growth parameters and yield of cowpea (Vigna unguiculata (L.) Walp.) in sandy loam soil of Prayagraj. Environment Conservation Journal 22:137−41

doi: 10.36953/ECJ.2021.221218
[32]

Kwaga YM. 2014. Evaluation of some cowpea (Vigna unguiculata L. Walp) genotypes at Mubi, Northern guinea savanna of Nigeria. The International Journal of Engineering and Science 3:44−47

[33]

Sharma S, Jaga PK. 2015. Effect of bio-fertilizer and fertilizers on productivity of soybean. Annals of Plant and Soil Research 17:171−74

[34]

Molla MN, Solaiman ARM. 2014. Influence of arbuscular Mycorrhiza in presence of Rhizobium, nitrogen and phosphorous on growth and yield of mungbean. Bulletin of the Institute of Tropical Agriculture, Kyushu University 37:1−26

doi: 10.11189/bita.37.1
[35]

Yadav M, Yadav SS, Kumar S, Yadav HK, Tripura P. 2017. Effect of phosphorus and bio-fertilizers on yield, nutrient content and uptake of urban [Vigna mungo (L.) Hepper]. International Journal of Current Microbiology and Applied Sciences 6:2144−51

doi: 10.20546/ijcmas.2017.605.240
[36]

Dobo B. 2022. Effect of arbuscular mycorrhizal fungi (AMF) and rhizobium inoculation on growth and yield of Glycine max L. varieties. International Journal of Agronomy 2022:9520091

doi: 10.1155/2022/9520091
[37]

Jannat BA. 2017. Impact of different combinations of bio fertilizer and inorganic fertilizer on growth and yield of chickpea. Thesis. Sher-e-Bangla Agricultural University, Dhaka. Bangladesh.

[38]

Mathesius U. 2022. Are legumes different? Origins and consequences of evolving nitrogen fixing symbioses Journal of Plant Physiology 276:153765

doi: 10.1016/j.jplph.2022.153765
[39]

Gough EC, Owen KJ, Zwart RS, Thompson JP. 2022. The role of nutrients underlying interactions among root-nodule bacteria (Bradyrhizobium sp.), arbuscular mycorrhizal fungi (Funneliformis mosseae) and root-lesion nematodes (Pratylenchus thornei) in nitrogen fixation and growth of mung bean (Vigna radiata). Plant and Soil 472:421−49

doi: 10.1007/s11104-021-05254-8
[40]

Nosheen S, Ajmal I, Song Y. 2021. Microbes as Biofertilizers, a Potential Approach for Sustainable Crop Production. Sustainability 13:1868

doi: 10.3390/su13041868
[41]

Saboor A, Ali MA, Hussain S, El Enshasy HA, Hussain S, et al. 2021. Zinc nutrition and arbuscular mycorrhizal symbiosis effects on maize (Zea mays L.) growth and productivity. Saudi Journal of Biological Sciences 28:6339−51

doi: 10.1016/j.sjbs.2021.06.096
[42]

Yang J, Lan L, Jin Y, Yu N, Wang D, et al. 2022. Mechanisms underlying legume–rhizobium symbioses. Journal of Integrative Plant Biology 64:244−67

doi: 10.1111/jipb.13207
[43]

Álvarez-Aragón R, Palacios JM, Ramírez-Parra E. 2023. Rhizobial symbiosis promotes drought tolerance in Vicia sativa and Pisum sativum. Environmental and Experimental Botany 208:105268

doi: 10.1016/j.envexpbot.2023.105268
[44]

Channaveerswamy AS. 2005. Studies on integrated nutrient management and planting methods on seed yield and quality of groundnut. PhD Thesis. University of Agricultural Sciences, Dharwad, Karnataka.

[45]

Ghimire S, Poudel Chhetri B, Shrestha J. 2023. Efficacy of different organic and inorganic nutrient sources on the growth and yield of bitter gourd (Momordica charantia L.). Heliyon 2023:e22135

doi: 10.1016/j.heliyon.2023.e22135
[46]

Yang S, Imran, Ortas I. 2023. Impact of mycorrhiza on plant nutrition and food security. Journal of Plant Nutrition 46:3247−72

doi: 10.1080/01904167.2023.2192780
[47]

Khaliq A, Perveen S, Alamer KH, Zia Ul Haq M, Rafique Z, et al. 2022. Arbuscular Mycorrhizal Fungi Symbiosis to Enhance Plant–Soil Interaction. Sustainability 14:7840

doi: 10.3390/su14137840
[48]

Zhu B, Gao T, Zhang D, Ding K, Li C, et al. 2022. Functions of arbuscular mycorrhizal fungi in horticultural crops. Scientia Horticulturae 303:111219

doi: 10.1016/j.scienta.2022.111219
[49]

Singh TB, Ali A, Prasad M, Yadav A, Shrivastav P, et al. 2020. Role of organic fertilizers in improving soil fertility. In Contaminants in Agriculture, eds. Naeem M, Ansari AA, Gill SS. Switzerland: Springer. pp. 61–77. https://doi.org/10.1007/978-3-030-41552-5_3

[50]

Ahmad W, Nepal J, Zou Z, Munsif F, Khan A, et al. 2023. Biochar particle size coupled with biofertilizer enhances soil carbon-nitrogen microbial pools and CO2 sequestration in lentil. Frontiers in Environmental Science 11:1114728

doi: 10.3389/fenvs.2023.1114728
[51]

Badr El-Din SMS, Moawad H. 1988. Enhancement of nitrogen fixation in lentil, faba bean, and soybean by dual inoculation with Rhizobia and mycorrhizae. Plant and Soil 108:117−23

doi: 10.1007/BF02370106
[52]

Armin W, Ashraf-Uz-Zaman K, Zamil SS, Rabin M, Bhadra A, et al. 2016. Combined effect of organic and inorganic fertilizers on the growth and yield of mungbean (Bari Mung 6). International Journal of Scientific and Research Publications 6:557−61