[1] |
Conab – Companhia Nacional de Abastecimento. Levantamento de Safras. www.conab.gov.br/info-agro/safras/serie-historica-das-safras (Accessed 3 December 2020) |
[2] |
Ortega AC, Silva GJC, Martins HEP. 2014. Recent production transformations agriculture in the Savanna: the analysis of the Triangulo Region Mineiro and Alto Paranaíba. Ensaios FEE 35(2):555−84 |
[3] |
Marques TV, Mendes K, Mutti P, Medeiros S, Silva L, et al. 2020. Environmental and biophysical controls of evapotranspiration from seasonally dry tropical forests (Caatinga) in the Brazilian Semiarid. Agricultural and Forest Meteorology 287:107957 doi: 10.1016/j.agrformet.2020.107957 |
[4] |
Vieira EL, Souza GS, Santos AR, Santos Silva J. 2010. Manual de Fisiologia Vegetal. São Luis: EDUFMA. 230 pp. www.edufma.ufma.br/wp-content/uploads/woocommerce_uploads/2021/04/MANUAL-Fisiologia-vegetal-2021-Vers%C3%A3o-publicada-EDUFMA-Final.pdf |
[5] |
Manavalan LP, Guttikonda SK, Phan Tran LS, Nguyen HT. 2009. Physiological and molecular approaches to improve drought resistance in soybean. Plant and Cell Physiology 50:1260−76 doi: 10.1093/pcp/pcp082 |
[6] |
Wang LS, Chen QS, Xin DW, Qi ZM, Zhang C, et al. 2018. Overexpression of GmBIN2, a soybean glycogen synthase kinase 3 gene, enhances tolerance to salt and drought in transgenic Arabidopsis and soybean hairy roots. Journal of Integrative Agriculture 17(9):1959−71 doi: 10.1016/S2095-3119(17)61863-X |
[7] |
Kasim WA, Osman MEH, Omar MN, Salama S. 2021. Enhancement of drought tolerance in Triticum aestivum L. seedlings using Azospirillum brasilense NO40 and Stenotrophomonas maltophilia B11. Bulletin of the National Research Centre 45:95 doi: 10.1186/s42269-021-00546-6 |
[8] |
Bulegon LG, Rampim L, Klein J, Kestring D, Guimarães VF, et al. 2016. Components of production and yield of soybean inoculated with Bradyrhizobium and Azospirillum. Terra Latinoam 34(2):169−76 |
[9] |
Armanhi JSL, de Souza RSC, Biazotti BB, Yassitepe JECT, Arruda P. 2021. Modulating drought stress response of maize by a synthetic bacterial community. Frontiers in Microbiology 12:747541 doi: 10.3389/fmicb.2021.747541 |
[10] |
Naoe AML, Peluzio JM, Simão AH. 2018. Tecnologia de coinoculação com Azospirillum brasiliense sobre a eficiência do uso da água em cultivares de soja submetidas a estresse hídrico. Tópicos especiais em biotecnologia e biodiversidade 2:27−38 |
[11] |
de L Naoe AM, Peluzio JM, Campos LJM, Naoe LK, Silva RAE. 2020. Co-inoculation with Azospirillum brasilense in soybean cultivars subjected to water déficit. Revista Brasileira de Engenharia Agrícola e Ambiental 24(2):89−94 doi: 10.1590/1807-1929/agriambi.v24n2p89-94 |
[12] |
Hungria M, Nogueira MA, Araújo RS. 2013. Co-inoculation of soybeans and common beans with Rhizobia and Azospirilla: Strategies to improve sustainability. Biology Fertility of Soils 49:791−801 doi: 10.1007/s00374-012-0771-5 |
[13] |
Zuffo AM, Bruzi AT, de Rezende PM, Bianchi MC, Zambiazzi EV, et al. 2016. Morphoagronomic and productive traits of RR® soybean due to inoculation via Azospirillum brasilense groove. African Journal of Microbiology Research 10(13):438−44 doi: 10.5897/AJMR2015.7682 |
[14] |
Scott AJ, knott M. 1974. Cluster analysis method for grouping means in the analysis of variance. Biometrics 30(3):505−12 doi: 10.2307/2529204 |
[15] |
Ferreira DF. 1998. Sisvar - sistema de análise de variância para dados balanceados. Lavras: UFLA. 19 pp. https://des.ufla.br/~danielff/meusarquivospdf/art63.pdf |
[16] |
Hungria M. 2011. Inoculação com Azospirillum brasilense: inovação em rendimento a baixo custo. Embrapa Soja, Documento 325. https://ainfo.cnptia.embrapa.br/digital/bitstream/item/29676/1/Inoculacao-com-azospirillum.pdf |
[17] |
Matsumura EE, Secco VA, Moreira RS, dos Santos OJAP, Hungria M, et al. 2015. Composition and activity of endophytic bacterial communities in field-grown maize plants inoculated with Azospirillum brasilense. Annals of Microbiology 65:2187−200 doi: 10.1007/s13213-015-1059-4 |
[18] |
Marques DM, Magalhães PC, Marriel IE, Gomes CC Jr, da Silva AB, et al. 2021. Gas exchange, root morphology and nutrients in maize plants inoculated with Azospirillum brasilense cultivated under two water conditions. Brazilian Archives of Biology and Technology 64:e21190580 doi: 10.1590/1678-4324-2021190580 |
[19] |
Tonelli ML, Magallanes-Noguera C, Fabra A. 2017. Symbiotic performance and induction of systemic resistance against Cercospora sojina in soybean plants co-inoculated with Bacillus sp. CHEP5 and Bradyrhizobium japonicum E109. Archives of Microbiology 199:1283−291 doi: 10.1007/s00203-017-1401-2 |
[20] |
Lawson T, Blatt MR. 2014. Stomatal size, speed, and responsiveness impact on photosynthesis and water use efficiency. Plant Physiology 164(4):1556−70 doi: 10.1104/pp.114.237107 |
[21] |
Cohen AC, Bottini R, Pontin M, Berli FJ, Moreno D, et al. 2015. Azospirillum brasilense ameliorates the response of Arabidopsis thaliana to drought mainly via enhancement of ABA levels. Physiologia Plantarum Journal 153:79−90 doi: 10.1111/ppl.12221 |
[22] |
Wei Z, Abdelhakim LOA, Fang l, Peng X, Liu J, et al. 2022. Elevated CO2 effect on the response of stomatal control and water use efficiency in amaranth and maize plants to progressive drought stress. Agricultural Water Management 266:107609 doi: 10.1016/j.agwat.2022.107609 |
[23] |
Flexas J, Barón M, Bota J, Ducruet JM, Gallé A, Galmés J, et al. 2009. Photosynthesis limitations during water stress acclimation and recovery in the drought-adapted Vitis hybrid Richter-110 (V. Berlandieri × V. rupestris). Journal of Experimental Botany 60(8):2361−77 doi: 10.1093/jxb/erp069 |
[24] |
da Costa GF, Marenco RA. 2007. Photosynthesis, stomatal conductance and leaf water potential in crabwood (Carapa guianensis). Acta Amazonica 37(2):229−34 doi: 10.1590/S0044-59672007000200008 |
[25] |
Cohen AC, Travaglia CN, Bottini R, Piccoli PN. 2009. Participation of abscisic acid and gibberellins produced by endophytic Azospirillum in the alleviation of drought effects in maize. Botany 87(5):455−62 doi: 10.1139/B09-023 |
[26] |
Neto FJD, Yoshimi FK, Doratiotto RG, Miyamamoto YR, Domingues MCS. 2013. Desenvolvimento e produtividade do milho verde safrinha em resposta à aplicação foliar com Azospirillum brasilense. Enciclopédia Biosfera 9(17):1030−40 www.conhecer.org.br/enciclop/2013b/CIENCIAS%20AGRARIAS/desenvolvimento%20e%20produtividade.pdf |
[27] |
Zuffo AM, Bruzi AT, de Rezende PM, de Carvalho MLM, Zambiazzi EV, et al. 2016. Foliar application of Azospirillum brasilense in soybean and seed physiological quality. African Journal of Microbiology Research 10(20):675−80 doi: 10.5897/AJMR2016.7911 |