[1]

Maguire KM, Banks NH, Lang A, Gordon IL. 2000. Harvest date, cultivar, orchard, and tree effects on water vapor permeance in apples. Journal of the American Society for Horticultural Science 125:100−4

doi: 10.21273/JASHS.125.1.100
[2]

Ben-Yehoshua S, Rodov V. 2002. Transpiration and water stress. In Postharvest Physiology and Pathology of Vegetables, eds. Bartz JA, Brecht JK. Boca Raton: CRC Press. pp. 111–59.

[3]

Caleb OJ, Mahajan PV, Al-Said FA, Opara UL. 2013. Transpiration rate and quality of pomegranate arils as affected by storage conditions. CYTA - Journal of Food 11:199−207

doi: 10.1080/19476337.2012.721807
[4]

Vigneault C, Thompson J, Wu S. 2009. Designing container for handling fresh horticultural produce. Postharvest Technologies for Horticultural Crops 2:25−47

[5]

Lufu R, Berry TM, Ambaw A, Opara UL. 2018. The influence of liner packaging on weight loss and decay of pomegranate fruit. Acta Horticulturae 1201:259−64

doi: 10.17660/ActaHortic.2018.1201.35
[6]

Maguire KM, Banks NH, Opara UL. 2010. Factors affecting weight loss of apples. In Horticultural Reviews, ed. Janick J. Oxford, UK: John Wiley & Sons, Inc. pp. 197–234. https://doi.org/10.1002/9780470650783.ch4

[7]

Shirazi A, Cameron AC. 1993. Measuring transpiration rates of tomato and other detached fruit. HortScience 28:1035−38

doi: 10.21273/HORTSCI.28.10.1035
[8]

Lufu R, Ambaw A, Opara UL. 2019. The contribution of transpiration and respiration processes in the mass loss of pomegranate fruit (cv. Wonderful). Postharvest Biology and Technology 157:110982

doi: 10.1016/j.postharvbio.2019.110982
[9]

Xanthopoulos GT, Templalexis CG, Aleiferis NP, Lentzou DI. 2017. The contribution of transpiration and respiration in water loss of perishable agricultural products: the case of pears. Biosystems Engineering 158:76−85

doi: 10.1016/j.biosystemseng.2017.03.011
[10]

Xanthopoulos GT, Athanasiou AA, Lentzou DI, Boudouvis AG, Lambrinos GP. 2014. Modelling of transpiration rate of grape tomatoes. Semi-empirical and analytical approach. Biosystems Engineering 124:16−23

doi: 10.1016/j.biosystemseng.2014.06.005
[11]

Bovi GG, Rux G, Caleb OJ, Herppich WB, Linke M, et al. 2018. Measurement and modelling of transpiration losses in packaged and unpackaged strawberries. Biosystems Engineering 174:1−9

doi: 10.1016/j.biosystemseng.2018.06.012
[12]

Amarante CVT. 1998. Gas exchange, ripening behaviour and postharvest quality of coated pears. Thesis. Massey University, New Zealand. 264 pp.

[13]

Olivas GI, Barbosa-Cánovas GV. 2005. Edible coatings for fresh-cut fruits. Critical Reviews in Food Science and Nutrition 45:657−70

doi: 10.1080/10408690490911837
[14]

Vieira JM, Flores-López ML, de Rodríguez DJ, Sousa MC, Vicente AA, et al. 2016. Effect of chitosan–Aloe vera coating on postharvest quality of blueberry (Vaccinium corymbosum) fruit. Postharvest Biology and Technology 116:88−97

doi: 10.1016/j.postharvbio.2016.01.011
[15]

Karel M, Lund DB. 2003. Physical principles of food preservation. 2nd Edition. Boca Raton: CRC Press. 640 pp. https://doi.org/10.1201/9780203911792

[16]

Caurie M. 2011. Bound water: its definition, estimation and characteristics. International Journal of Food Science & Technology 46:930−34

doi: 10.1111/j.1365-2621.2011.02581.x
[17]

Taiz L, Zeiger E. 2002. Plant Physiology, 3rd edition. Sunderland: Sinauer Associates Inc. 690 pp.

[18]

Nguyen TA, Verboven P, Scheerlinck N, Vandewalle S, Nicolaï BM. 2006. Estimation of effective diffusivity of pear tissue and cuticle by means of a numerical water diffusion model. Journal of Food Engineering 72:63−72

doi: 10.1016/j.jfoodeng.2004.11.019
[19]

Datta AK. 2007. Porous media approaches to studying simultaneous heat and mass transfer in food processes. I: problem formulations. Journal of Food Engineering 80:80−95

doi: 10.1016/j.jfoodeng.2006.05.013
[20]

Ho QT, Carmeliet J, Datta AK, Defraeye T, Delele MA, et al. 2013. Multiscale modeling in food engineering. Journal of Food Engineering 114:279−91

doi: 10.1016/j.jfoodeng.2012.08.019
[21]

Defraeye T. 2014. Advanced computational modelling for drying processes - a review. Applied Energy 131:323−44

doi: 10.1016/j.apenergy.2014.06.027
[22]

Kader AA, Chordas A, Elyatem S. 1984. Response of pomegranate to ethylene treatment and storage temperature. California Agriculture 38:14−15

[23]

Veraverbeke EA, Verboven P, Van Oostveldt P, Nicolaï BM. 2003. Prediction of moisture loss across the cuticle of apple (Malus sylvestris subsp. mitis (Wallr.)) during storage: Part 1. Model development and determination of diffusion coefficients. Postharvest Biology and Technology 30:75−88

doi: 10.1016/S0925-5214(03)00083-8
[24]

Díaz-Pérez JC, Muy-Rangel MD, Mascorro AG. 2007. Fruit size and stage of ripeness affect postharvest water loss in bell pepper fruit (Capsicum annuum L.). Journal of the Science of Food and Agriculture 87:68−73

doi: 10.1002/jsfa.2672
[25]

Thompson JF, Mitchell FG, Rumsey TR, Kasmire RF, Crisosto CH. 2008. Commercial cooling of fruits, vegetables, and flowers. Oakland, California, USA: Division of Agriculture and Natural Resources, University of California. 61 pp.

[26]

Veraverbeke EA, Verboven P, Scheerlinck N, Hoang ML, Nicolaï BM. 2003. Determination of the diffusion coefficient of tissue, cuticle, cutin and wax of apple. Journal of Food Engineering 58:285−94

doi: 10.1016/S0260-8774(02)00387-4
[27]

Nobel PS. 2009. Physicochemical and environmental plant physiology, 4th editon. Oxford, UK: Academic Press. 582 pp. https://doi.org/10.1016/B978-0-12-374143-1.X0001-4

[28]

Ben-Yehoshua S. 1987. Transpiration, water stress, and gas exchange. In Postharvest Physiology of Vegetables, ed. Wheichmann J. New York: Marcel Dekker. pp. 113–72.

[29]

Veraverbeke EA, Verboven P, Van Oostveldt P, Nicolaï BM. 2003. Prediction of moisture loss across the cuticle of apple (Malus sylvestris subsp. mitis (Wallr.)) during storage: part 2. model simulations and practical applications. Postharvest Biology and Technology 30:89−97

doi: 10.1016/S0925-5214(03)00082-6
[30]

Knoche M, Peschel S, Hinz M, Bukovac MJ. 2000. Studies on water transport through the sweet cherry fruit surface: characterizing conductance of the cuticular membrane using pericarp segments. Planta 212:127−35

doi: 10.1007/s004250000404
[31]

Burton WG. 1982. Post-harvest physiology of food crops. London: Longman. 352 pp.

[32]

Taiz L, Zeiger E. 2010. Plant physiology, 5th edition. Sunderland, Massachusetts, USA: Sinauer Associates Inc. 782 pp.

[33]

Hertog MLATM, Peppelenbos HW, Evelo RG, Tijskens LMM. 1998. A dynamic and generic model of gas exchange of respiring produce: The effects of oxygen, carbon dioxide and temperature. Postharvest Biology and Technology 14:335−49

doi: 10.1016/S0925-5214(98)00058-1
[34]

Belay ZA, Caleb OJ, Opara UL. 2017. Enzyme kinetics modelling approach to evaluate the impact of high CO2 and super-atmospheric O2 concentrations on respiration rate of pomegranate arils. CYTA - Journal of Food 15:608−16

doi: 10.1080/19476337.2017.1324524
[35]

Saltveit M. 2005. Repiratory metabolism. In The Commercial Storage of Fruits, Vegetables, and Florist and Nursery Stock, eds. Gross KC, Wang CY, Saltveit ME. Washington: Agricultural Research Service, United States Department of Agriculture. pp. 68–75.

[36]

Sastry SK. 1985. Moisture losses from perishable commodities: recent research and developments. International Journal of Refrigeration 8:343−46

doi: 10.1016/0140-7007(85)90029-5
[37]

Kang JS, Lee DS. 1998. A kinetic model for transpiration of fresh produce in a controlled atmosphere. Journal of Food Engineering 35:65−73

doi: 10.1016/S0260-8774(98)00009-0
[38]

Song Y, Vorsa N, Yam KL. 2002. Modeling respiration–transpiration in a modified atmosphere packaging system containing blueberry. Journal of Food Engineering 53:103−9

doi: 10.1016/S0260-8774(01)00146-7
[39]

Becker BR, Fricke BA. 1996. Transpiration and respiration of fruits and vegetables. In New Developments in Refrigeration for Food Safety and Quality, ed. Murphy WE. ‎St. Joseph, Michigan: American Society of Agricultural Engineers. pp. 110–21. https://b.web.umkc.edu/beckerb/publications/chapters/trans_resp.pdf

[40]

Lufu R, Ambaw A, Opara UL. 2020. Water loss of fresh fruit: influencing pre-harvest, harvest and postharvest factors. Scientia Horticulturae 272:109519

doi: 10.1016/j.scienta.2020.109519
[41]

Caleb OJ, Mahajan PV, Opara UL, Witthuhn CR. 2012. Modelling the respiration rates of pomegranate fruit and arils. Postharvest Biology and Technology 64:49−54

doi: 10.1016/j.postharvbio.2011.09.013
[42]

Lufu R, Ambaw A, Opara UL. 2023. Determination of moisture loss of pomegranate cultivars under cold and shelf storage conditions and control strategies. Sustainable Food Technology 1:79−91

doi: 10.1039/D2FB00017B
[43]

Amarante C, Banks NH, Ganesh S. 2001. Relationship between character of skin cover of coated pears and permeance to water vapour and gases. Postharvest Biology and Technology 21:291−301

doi: 10.1016/S0925-5214(00)00176-9
[44]

Mahajan P, Rux G, Caleb O, Linke M, Herppich W, et al. 2016. Mathematical model for transpiration rate at 100% humidity for designing modified humidity packaging. Acta Horticulturae 1141:269−74

doi: 10.17660/ActaHortic.2016.1141.33
[45]

Elyatem SM, Kader AA. 1984. Post-harvest physiology and storage behaviour of pomegranate fruits. Scientia Horticulturae 24:287−98

doi: 10.1016/0304-4238(84)90113-4
[46]

Sousa-Gallagher MJ, Mahajan PV, Mezdad T. 2013. Engineering packaging design accounting for transpiration rate: model development and validation with strawberries. Journal of Food Engineering 119:370−76

doi: 10.1016/j.jfoodeng.2013.05.041
[47]

Holloway PJ. 1982. Structure and histochemistry of plant cuticular membranes: an overview. In The Plant Cuticle, eds. Cutler DF, Alvin KL, Price CE. London: Academic Press. pp. 1–32.

[48]

Possingham JV, Chambers TC, Radler F, Grncarevic M. 1967. Cuticular transpiration and wax structure and composition of leaves and fruit of Vitis vinifera. Australian Journal of Biological Sciences 20:1149−54

doi: 10.1071/BI9671149
[49]

Konarska A. 2013. The relationship between the morphology and structure and the quality of fruits of two pear cultivars (Pyrus communis L.) during their development and maturation. The Scientific World Journal 2013:846796

doi: 10.1155/2013/846796
[50]

Lufu R, Ambaw A, Opara UL. 2021. Functional characterisation of lenticels, micro-cracks, wax patterns, peel tissue fractions and water loss of pomegranate fruit (cv. Wonderful) during storage. Postharvest Biology and Technology 178:111539

doi: 10.1016/j.postharvbio.2021.111539
[51]

Nguyen TA, Verboven P, Scheerlinck N, Veraverbeke E, Nicolaï BM. 2003. An estimation procedure of effective diffusivity in pear tissue by means of a numerical water diffusion model. Acta Horticulturae 599:541−48

doi: 10.17660/ActaHortic.2003.599.69
[52]

Verstreken E, Van Hecke P, Scheerlinck N, De Baerdemaeker J, Nicolaï B. 1998. Parameter estimation for moisture transport in apples with the aid of NMR imaging. Magnetic Resonance in Chemistry 36:196−204

doi: 10.1002/(SICI)1097-458X(199803)36:3<196::AID-OMR238>3.0.CO;2-9
[53]

Mebatsion HK, Verboven P, Verlinden BE, Ho QT, Nguyen TA, et al. 2006. Microscale modelling of fruit tissue using Voronoi tessellations. Computers and Electronics in Agriculture 52:36−48

doi: 10.1016/j.compag.2006.01.002
[54]

Woods JL. 1990. Moisture loss from fruits and vegetables. Postharvest News and Information 1:195−99

[55]

Gibert C, Génard M, Vercambre G, Lescourret F. 2010. Quantification and modelling of the stomatal, cuticular and crack components of peach fruit surface conductance. Functional Plant Biology 37:264−74

doi: 10.1071/FP09118
[56]

Knoche M, Peschel S. 2007. Deposition and strain of the cuticle of developing European plum fruit. Journal of the American Society for Horticultural Science 132:597−602

doi: 10.21273/JASHS.132.5.597
[57]

Lara I, Belge B, Goulao LF. 2014. The fruit cuticle as a modulator of postharvest quality. Postharvest Biology and Technology 87:103−12

doi: 10.1016/j.postharvbio.2013.08.012
[58]

Fanta SW, Abera MK, Ho QT, Verboven P, Carmeliet J, et al. 2013. Microscale modeling of water transport in fruit tissue. Journal of Food Engineering 118:229−37

doi: 10.1016/j.jfoodeng.2013.04.003
[59]

Fanta SW, Vanderlinden W, Abera MK, Verboven P, Karki R, et al. 2012. Water transport properties of artificial cell walls. Journal of Food Engineering 108:393−402

doi: 10.1016/j.jfoodeng.2011.09.010
[60]

Fanta SW, Abera MK, Aregawi WA, Ho QT, Verboven P, et al. 2013. Microscale modeling of coupled water transport and mechanical deformation of fruit tissue during dehydration. Journal of Food Engineering 124:86−96

doi: 10.1016/j.jfoodeng.2013.10.007
[61]

Aregawi WA, Defraeye T, Verboven P, Herremans E, De Roeck G, et al. 2013. Modeling of coupled water transport and large deformation during dehydration of apple tissue. Food and Bioprocess Technology 6:1963−78

doi: 10.1007/s11947-012-0862-1
[62]

Nguyen TA, Verboven P, Daudin JD, Nicolaï BM. 2004. Measurement and modelling of water sorption isotherms of 'Conference' pear flesh tissue in the high humidity range. Postharvest Biology and Technology 33:229−41

doi: 10.1016/j.postharvbio.2004.03.002
[63]

Nguyen TA, Dresselaers T, Verboven P, D'Hallewin G, Culeddu N, et al. 2006. Finite element modelling and MRI validation of 3D transient water profiles in pears during postharvest storage. Journal of the Science of Food and Agriculture 86:745−56

doi: 10.1002/jsfa.2408
[64]

Aregawi WA, Abera MK, Fanta SW, Verboven P, Nicolai B. 2014. Prediction of water loss and viscoelastic deformation of apple tissue using a multiscale model. Journal of Physics: Condensed Matter 26:464111

doi: 10.1088/0953-8984/26/46/464111
[65]

Marcotte M, Toupin CJ, Le Maguer M. 1991. Mass transfer in cellular tissues. Part I: the mathematical model. Journal of Food Engineering 13:199−220

doi: 10.1016/0260-8774(91)90027-P
[66]

Corzo O, Bracho N, Alvarez C. 2008. Water effective diffusion coefficient of mango slices at different maturity stages during air drying. Journal of Food Engineering 87:479−84

doi: 10.1016/j.jfoodeng.2007.12.025
[67]

Mahajan PV, Oliveira FAR, Macedo I. 2008. Effect of temperature and humidity on the transpiration rate of the whole mushrooms. Journal of Food Engineering 84:281−88

doi: 10.1016/j.jfoodeng.2007.05.021
[68]

Becker BR, Fricke BA. 2001. A numerical model of commodity moisture loss and temperature distribution during refrigerated storage. Acta Horticulturae 566:431−36

doi: 10.17660/actahortic.2001.566.55
[69]

Sastry SK, Buffington DE. 1983. Transpiration rates of stored perishable commodities: a mathematical model and experiments on tomatoes. International Journal of Refrigeration 6:84−96

doi: 10.1016/0140-7007(83)90050-6
[70]

Bovi GG, Caleb OJ, Linke M, Rauh C, Mahajan PV. 2016. Transpiration and moisture evolution in packaged fresh horticultural produce and the role of integrated mathematical models: a review. Biosystems Engineering 150:24−39

doi: 10.1016/j.biosystemseng.2016.07.013
[71]

Maguire KM, Lang A, Banks NH, Hall A, Hopcroft D, et al. 1999. Relationship between water vapour permeance of apples and micro-cracking of the cuticle. Postharvest Biology and Technology 17:89−96

doi: 10.1016/S0925-5214(99)00046-0
[72]

Kritzinger I, Theron KI, Lötze GFA, Lötze E. 2018. Peel water vapour permeance of Japanese plums as indicator of susceptibility to postharvest shriveling. Scientia Horticulturae 242:188−94

doi: 10.1016/j.scienta.2018.07.033
[73]

Kritzinger I, Lötze E. 2019. Quantification of lenticels in Japanese plum cultivars and their effect on total fruit peel permeance. Scientia Horticulturae 254:35−39

doi: 10.1016/j.scienta.2019.04.082
[74]

Farinu A, Baik OD. 2007. Thermal properties of sweet potato with its moisture content and temperature. International Journal of Food Properties 10:703−19

doi: 10.1080/10942910601137482
[75]

Ikegwu OJ, Ekwu FC. 2009. Thermal and physical properties of some tropical fruits and their juices in Nigeria. Journal of Food Technology 2:38−42

[76]

Zabalaga RF, La Fuente CIA, Tadini CC. 2016. Experimental determination of thermophysical properties of unripe banana slices (Musa cavendishii) during convective drying. Journal of Food Engineering 187:62−69

doi: 10.1016/j.jfoodeng.2016.04.020
[77]

Ho QT, Verboven P, Fanta SW, Abera MK, Retta MA, et al. 2014. A multiphase pore scale network model of gas exchange in apple fruit. Food and Bioprocess Technology 7:482−95

doi: 10.1007/s11947-012-1043-y
[78]

Ho QT, Verboven P, Verlinden BE, Herremans E, Wevers M, et al. 2011. A three-dimensional multiscale model for gas exchange in fruit. Plant Physiology 155:1158−68

doi: 10.1104/pp.110.169391
[79]

Caleb OJ. 2013. Modified atmosphere packaging of pomegranate arils. Thesis. Stellenbosch University, South Africa. 208 pp.

[80]

Kedia P, Kausley SB, Rai B. 2021. Temperature and humidity based models for the prediction of transpiration rate in potatoes during storage. Journal of Food Process Engineering 44:e13626

doi: 10.1111/jfpe.13626
[81]

Lufu R, Ambaw A, Opara UL. 2021. The influence of internal packaging (liners) on moisture dynamics and physical and physiological quality of pomegranate fruit during cold storage. Foods 10:1388

doi: 10.3390/foods10061388
[82]

Fishman S, Rodov V, Ben-Yehoshua S. 1996. Mathematical model for perforation effect on oxygen and water vapor dynamics in modified-atmosphere packages. Journal of Food Science 61:956−61

doi: 10.1111/j.1365-2621.1996.tb10910.x
[83]

Mahajan PV, Rodrigues FAS, Leflaive E. 2008. Analysis of water vapour transmission rate of perforation-mediated modified atmosphere packaging (PM-MAP). Biosystems Engineering 100:555−61

doi: 10.1016/j.biosystemseng.2008.05.008
[84]

Konarska A. 2015. Characteristics of fruit (Prunus domestica L.) skin: structure and antioxidant content. International Journal of Food Properties 18:2487−99

doi: 10.1080/10942912.2014.984041
[85]

Konarska A. 2012. Differences in the fruit peel structures between two apple cultivars during storage. Acta Sctientiarum Polonorum Hortorum Cultus 11:105−16

[86]

Singh V, Gamrasni D, Arie RB, Naschitz S, Friedman H. 2016. Identification of open lenticels in apples after harvest in relation to lenticel breakdown development during storage. Postharvest Biology and Technology 121:165−70

doi: 10.1016/j.postharvbio.2016.06.004
[87]

Veraverbeke EA, Van Bruaene N, Van Oostveldt P, Nicolaï BM. 2001. Non destructive analysis of the wax layer of apple (Malus domestica Borkh.) by means of confocal laser scanning microscopy. Planta 213:525−33

doi: 10.1007/s004250100528
[88]

Yang Y, Zhou B, Zhang J, Wang C, Liu C, et al. 2017. Relationships between cuticular waxes and skin greasiness of apples during storage. Postharvest Biology and Technology 131:55−67

doi: 10.1016/j.postharvbio.2017.05.006
[89]

Schoeman L, Williams P, du Plessis A, Manley M. 2016. X-ray micro-computed tomography (μCT) for non-destructive characterisation of food microstructure. Trends in Food Science & Technology 47:10−24

doi: 10.1016/j.jpgs.2015.10.016
[90]

Mendoza F, Verboven P, Mebatsion HK, Kerckhofs G, Wevers M, et al. 2007. Three-dimensional pore space quantification of apple tissue using X-ray computed microtomography. Planta 226:559−70

doi: 10.1007/s00425-007-0504-4
[91]

Herremans E, Verboven P, Verlinden BE, Cantre D, Abera M, et al. 2015. Automatic analysis of the 3-D microstructure of fruit parenchyma tissue using X-ray micro-CT explains differences in aeration. BMC Plant Biology 15:264

doi: 10.1186/s12870-015-0650-y
[92]

Cantre D, Herremans E, Verboven P, Ampofo-Asiama J, Nicolaï B. 2014. Characterization of the 3-D microstructure of mango (Mangifera indica L. cv. Carabao) during ripening using X-ray computed microtomography. Innovative Food Science & Emerging Technologies 24:28−39

doi: 10.1016/j.ifset.2013.12.008
[93]

Hills B. 1995. Food processing: an MRI perspective. Trends in Food Science & Technology 6:111−17

doi: 10.1016/S0924-2244(00)88993-1
[94]

McCarthy MJ, Perez E, Özilgen M. 1991. Model for transient moisture profiles of a drying apple slab using the data obtained with magnetic resonance imaging. Biotechnology Progress 7:540−43

doi: 10.1021/bp00012a009
[95]

Bucur V. 2003. Nuclear magnetic resonance. In Nondestructive Characterization and Imaging of Wood. Berlin, Heidelberg: Springer. pp. 215–79. https://doi.org/10.1007/978-3-662-08986-6_6

[96]

Wang SY, Wang PC, Faust M. 1988. Non-destructive detection of watercore in apple with nuclear magnetic resonance imaging. Scientia Horticulturae 35:227−34

doi: 10.1016/0304-4238(88)90116-1
[97]

Ruiz-Cabrera MA, Gou P, Foucat L, Renou JP, Daudin JD. 2004. Water transfer analysis in pork meat supported by NMR imaging. Meat Science 67:169−78

doi: 10.1016/j.meatsci.2003.10.005
[98]

Gezici-Koç Ö, Erich SJF, Huinink HP, van der Ven LGJ, Adan OCG. 2017. Bound and free water distribution in wood during water uptake and drying as measured by 1D magnetic resonance imaging. Cellulose 24:535−53

doi: 10.1007/s10570-016-1173-x