[1] |
Kaur A, Sharma A, Madhu, Verma PC, Upadhyay SK. 2022. EF-hand domain-containing proteins in Triticum aestivum: Insight into their roles in stress response and signalling. South African Journal of Botany 149:663−81 doi: 10.1016/j.sajb.2022.06.059 |
[2] |
Weiser CJ. 1970. Cold resistance and injury in woody plants. Science 169:1269−78 doi: 10.1126/science.169.3952.1269 |
[3] |
Upadhyay SK. 2023. Calcium channels, OST1 and stomatal defence: current status and beyond. Cells 12:127 doi: 10.3390/cells12010127 |
[4] |
Kudla J, Becker D, Grill E, Hedrich R, Hippler M, et al. 2018. Advances and current challenges in calcium signaling. New Phytologist 218:414−31 doi: 10.1111/nph.14966 |
[5] |
Hashimoto K, Eckert C, Anschütz U, Scholz M, Held K, et al. 2012. Phosphorylation of calcineurin B-like (CBL) calcium sensor proteins by their CBL-interacting protein kinases (CIPKs) is required for full activity of CBL-CIPK complexes toward their target proteins. Journal of Biological Chemistry 287:7956−68 doi: 10.1074/jbc.M111.279331 |
[6] |
Zhu JK. 2016. Abiotic stress signaling and responses in plants. Cell 167:313−24 doi: 10.1016/j.cell.2016.08.029 |
[7] |
Zhang H, Lv F, Han X, Xia X, Yin W. 2013. The calcium sensor PeCBL1, interacting with PeCIPK24/25 and PeCIPK26, regulates Na+/K+ homeostasis in Populus euphratica. Plant Cell Reports 32:611−21 doi: 10.1007/s00299-013-1394-5 |
[8] |
Batistič O, Kudla J. 2009. Plant calcineurin B-like proteins and their interacting protein kinases. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research 1793:985−92 doi: 10.1016/j.bbamcr.2008.10.006 |
[9] |
Luan S. 2009. The CBL-CIPK network in plant calcium signaling. Trends in Plant Science 14:37−42 doi: 10.1016/j.tplants.2008.10.005 |
[10] |
Cuéllar T, Pascaud F, Verdeil JL, Torregrosa L, Adam-Blondon AF, et al. 2010. A grapevine shaker Inward K+ channel activated by the calcineurin B-like calcium sensor 1-protein kinase CIPK23 network is expressed in grape berries under drought stress conditions. The Plant Journal 61:58−69 doi: 10.1111/j.1365-313X.2009.04029.x |
[11] |
Kolukisaoglu U, Weinl S, Blazevic D, Batistic O, Kudla J. 2004. Calcium sensors and their interacting protein kinases: genomics of the Arabidopsis and rice CBL-CIPK signaling networks. Plant Physiology 134:43−58 doi: 10.1104/pp.103.033068 |
[12] |
Zhang H, Yin W, Xia X. 2008. Calcineurin B-Like family in Populus: comparative genome analysis and expression pattern under cold, drought and salt stress treatment. Plant Growth Regulation 56:129−40 doi: 10.1007/s10725-008-9293-4 |
[13] |
Wang M, Gu D, Liu T, Wang Z, Guo X, et al. 2007. Overexpression of a putative maize calcineurin B-like protein in Arabidopsis confers salt tolerance. Plant Molecular Biology 65:733−46 doi: 10.1007/s11103-007-9238-8 |
[14] |
Mahajan S, Sopory SK, Tuteja N. 2006. Cloning and characterization of CBL-CIPK signalling components from a legume (Pisum sativum). The FEBS Journal 273:907−25 doi: 10.1111/j.1742-4658.2006.05111.x |
[15] |
Zhao J, Yu A, Li Y, Du Y, Wang G, et al. 2022. Analysis of response characteristics of millet SiCBL3 to abiotic stress China. Agricultural Science and Technology Journal 24(11):68−75 doi: 10.13304/j.nykjdb.2022.0566 |
[16] |
Nagae M, Nozawa A, Koizumi N, Sano H, Hashimoto H, et al. 2003. The crystal structure of the novel calcium-binding protein AtCBL2 from Arabidopsis thaliana. Journal of Biological Chemistry 278:42240−46 doi: 10.1074/jbc.M303630200 |
[17] |
Tang RJ, Liu H, Yang Y, Yang L, Gao XS, et al. 2012. Tonoplast calcium sensors CBL2 and CBL3 control plant growth and ion homeostasis through regulating V-ATPase activity in Arabidopsis. Cell Research 22:1650−65 doi: 10.1038/cr.2012.161 |
[18] |
Cheong YH, Kim KN, Pandey GK, Gupta R, Grant JJ, Luan S. 2003. CBL1, a calcium sensor that differentially regulates salt, drought, and cold responses in Arabidopsis. The Plant Cell 15:1833−45 doi: 10.1105/tpc.012393 |
[19] |
Pandey GK, Cheong YH, Kim KN, Grant JJ, Li L, et al. 2004. The calcium sensor calcineurin B-like 9 modulates abscisic acid sensitivity and biosynthesis in Arabidopsis. The Plant Cell 16:1912−24 doi: 10.1105/tpc.021311 |
[20] |
Albrecht V, Weinl S, Blazevic D, D'Angelo C, Batistic O, et al. 2003. The calcium sensor CBL1 integrates plant responses to abiotic stresses. The Plant Journal 36:457−70 doi: 10.1046/j.1365-313X.2003.01892.x |
[21] |
Nozawa A, Koizumi N, Sano H. 2001. An Arabidopsis SNF1-Related Protein Kinase, AtSR1, Interacts with a Calcium-Binding Protein, AtCBL2, of Which Transcripts Respond to Light. Plant and Cell Physiology 42:976−81 doi: 10.1093/pcp/pce126 |
[22] |
Quan R, Lin H, Mendoza I, Zhang Y, Cao W, et al. 2007. SCABP8/CBL10, a putative calcium sensor, interacts with the protein kinase SOS2 to protect Arabidopsis shoots from salt stress. The Plant Cell 19:1415−31 doi: 10.1105/tpc.106.042291 |
[23] |
Hwang YS, Bethke PC, Cheong YH, Chang HS, Zhu T, et al. 2005. A gibberellin-regulated calcineurin B in rice localizes to the tonoplast and is implicated in vacuole function. Plant Physiology 138:1347−58 doi: 10.1104/pp.105.062703 |
[24] |
Gao P, Zhao PM, Wang J, Wang HY, Du XM, et al. 2008. Co-expression and preferential interaction between two calcineurin B-like proteins and a CBL-interacting protein kinase from cotton. Plant Physiology and Biochemistry 46:935−40 doi: 10.1016/j.plaphy.2008.05.001 |
[25] |
Sun T, Wang Y, Wang M, Li T, Zhou Y, et al. 2015. Identification and comprehensive analyses of the CBL and CIPK gene families in wheat (Triticum aestivum L.). BMC Plant Biology 15:269 doi: 10.1186/s12870-015-0657-4 |
[26] |
Finn RD, Tate J, Mistry J, Coggill PC, Sammut SJ, et al. 2008. The Pfam protein families database. Nucleic Acids Research 36:D281−D288 doi: 10.1093/nar/gkm960 |
[27] |
Kumar S, Stecher G, Li M, Knyaz C, Tamura K. 2018. MEGA X: molecular evolutionary genetics analysis across computing platforms. Molecular Biology and Evolution 35:1547−49 doi: 10.1093/molbev/msy096 |
[28] |
He Z, Zhang H, Gao S, Lercher MJ, Chen WH, et a. 2016. Evolview v2: an online visualization and management tool for customized and annotated phylogenetic trees. Nucleic Acids Research 44:W236−W241 doi: 10.1093/nar/gkw370 |
[29] |
Lescot M, Déhais P, Thijs G, Marchal K, Moreau Y, et al. 2002. PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Research 30:325−27 doi: 10.1093/nar/30.1.325 |
[30] |
Zhang Z, Zhuo X, Zhao K, Zheng T, Han Y, et al. 2018. Transcriptome profiles reveal the crucial roles of hormone and sugar in the bud dormancy of Prunus mume. Scientific Reports 8:5090 doi: 10.1038/s41598-018-23108-9 |
[31] |
Xi Y, Liu J, Dong C, Cheng ZM. 2017. The CBL and CIPK gene family in grapevine (Vitis vinifera): genome-wide analysis and expression profiles in response to various abiotic stresses. Frontiers in Plant Science 8:978 doi: 10.3389/fpls.2017.00978 |
[32] |
Albrecht V, Ritz O, Linder S, Harter K, Kudla J. 2001. The NAF domain defines a novel protein-protein interaction module conserved in Ca2+-regulated kinases. The EMBO Journal 20:1051−63 doi: 10.1093/emboj/20.5.1051 |
[33] |
Liu S, Wang S, Liu M, Ji F, Li L, et al. 2015. Identification and genetic evolution analysis of tomato CBL family genes. Molecular Plant Breeding 13:2268−73 doi: 10.13271/j.mpb.013.002268 |
[34] |
Li C, Chen H, Lou G, Jiang Y, Wang Z, et al. 2023. Identification and expression pattern analysis of wheat CBL gene family. Journal of Wheat Crops 43:1125−34 |
[35] |
Roy SW, Penny D. 2007. Patterns of intron loss and gain in plants: intron loss–dominated evolution and genome-wide comparison of O. sativa and A. thaliana. Molecular Biology and Evolution 24:171−81 doi: 10.1093/molbev/msl159 |
[36] |
Nuruzzaman M, Manimekalai R, Sharoni AM, Satoh K, Kondoh H, et al. 2010. Genome-wide analysis of NAC transcription factor family in rice. Gene 465:30−44 doi: 10.1016/j.gene.2010.06.008 |
[37] |
Thomashow MF. 1999. PLANT COLD ACCLIMATION: freezing tolerance genes and regulatory mechanisms. Annual Review of Plant Physiology and Plant Molecular Biology 50:571−99 doi: 10.1146/annurev.arplant.50.1.571 |
[38] |
Xu Y, Lin J, Li X, Chang Y. 2015. Identification of the whole genome sequence of pear CBL gene family and expression analysis under abiotic stress. Chinese Agricultural Science 48(4):735−47 doi: 10.3864/j.issn.0578-1752.2015.04.11 |
[39] |
Xi Y. 2017. Grape CBL and CIPK gene families: genome-wideanalysis and expression pattern analysis under abiotic stress. Thesis. Nanjing Agricultural University, China. |
[40] |
Zhang J, Yang WR, Cheng TR, Pan HT, Zhang QX. 2013. Functional and evolutionary analysis of two CBF genes in Prunus mume. Canadian Journal of Plant Science 93:455−64 doi: 10.4141/cjps2012-193 |
[41] |
Zeng W, Zhou S, Zuo T, Liu Y, Zhu L, et al. 2022. Genome-wide identification and analysis of CBL family genes in tobacco. Molecular Plant Breeding Accepted paper:1−24 |