[1]

Lobell DB, Schlenker W, Costa-Roberts J. 2011. Climate trends and global crop production since 1980. Science 333:616−20

doi: 10.1126/science.1204531
[2]

Zhang J, Li X, Lin H, Chong K. 2019. Crop improvement through temperature resilience. Annual Review of Plant Biology 70:753−80

doi: 10.1146/annurev-arplant-050718-100016
[3]

Zhou Y, Xu F, Shao Y, He J. 2022. Regulatory mechanisms of heat stress response and thermomorphogenesis in plants. Plants 11:3410

doi: 10.3390/plants11243410
[4]

Mittler R, Finka A, Goloubinoff P. 2012. How do plants feel the heat? Trends in Biochemical Sciences 37:118−25

doi: 10.1016/j.tibs.2011.11.007
[5]

Gong Z, Xiong L, Shi H, Yang S, Herrera-Estrella LR, et al. 2020. Plant abiotic stress response and nutrient use efficiency. Science China Life Sciences 63:635−74

doi: 10.1007/s11427-020-1683-x
[6]

Scharf KD, Berberich T, Ebersberger I, Nover L. 2012. The plant heat stress transcription factor (Hsf) family: structure, function and evolution. Biochimica et Biophysica Acta (BBA) - Gene Regulatory Mechanisms 1819:104−19

doi: 10.1016/j.bbagrm.2011.10.002
[7]

Scharf KD, Heider H, Höhfeld I, Lyck R, Schmidt E, et al. 1998. The tomato Hsf system: HsfA2 needs interaction with HsfA1 for efficient nuclear import and may be localized in cytoplasmic heat stress granules. Molecular and Cellular Biology 18:2240−51

doi: 10.1128/MCB.18.4.2240
[8]

Li C, Chen Q, Gao X, Qi B, Chen N, et al. 2005. AtHsfA2 modulates expression of stress responsive genes and enhances tolerance to heat and oxidative stress in Arabidopsis. Science in China Series C: Life Sciences 48:540−50

doi: 10.1360/062005-119
[9]

Charng Y, Liu H, Liu N, Chi W, Wang C, et al. 2007. A heat-inducible transcription factor, HsfA2, is required for extension of acquired thermotolerance in Arabidopsis. Plant Physiology 143:251−62

doi: 10.1104/pp.106.091322
[10]

Banti V, Mafessoni F, Loreti E, Alpi A, Perata P. 2010. The heat-inducible transcription factor HsfA2 enhances anoxia tolerance in Arabidopsis. Plant Physiology 152:1471−83

doi: 10.1104/pp.109.149815
[11]

Chan-Schaminet KY, Baniwal SK, Bublak D, Nover L, Scharf KD. 2009. Specific interaction between tomato HsfA1 and HsfA2 creates hetero-oligomeric superactivator complexes for synergistic activation of heat stress gene expression. Journal of Biological Chemistry 284:20848−57

doi: 10.1074/jbc.M109.007336
[12]

Gong B, Yi J, Wu J, Sui J, Khan MA, et al. 2014. LlHSFA1, a novel heat stress transcription factor in lily (Lilium longiflorum), can interact with LlHSFA2 and enhance the thermotolerance of transgenic Arabidopsis thaliana. Plant Cell Reports 33:1519−33

doi: 10.1007/s00299-014-1635-2
[13]

Liu J, Feng L, Gu X, Deng X, Qiu Q, et al. 2019. An H3K27me3 demethylase-HSFA2 regulatory loop orchestrates transgenerational thermomemory in Arabidopsis. Cell Research 29:379−90

doi: 10.1038/s41422-019-0145-8
[14]

Friedrich T, Oberkofler V, Trindade I, Altmann S, Brzezinka K, et al. 2021. Heteromeric HSFA2/HSFA3 complexes drive transcriptional memory after heat stress in Arabidopsis. Nature Communications 12:3426

doi: 10.1038/s41467-021-23786-6
[15]

Lian N, Wang X, Jing Y, Lin J. 2021. Regulation of cytoskeleton-associated protein activities: linking cellular signals to plant cytoskeletal function. Journal of Integrative Plant Biology 63:241−50

doi: 10.1111/jipb.13046
[16]

Kong Q, Yuan J, Gao L, Zhao S, Jiang W, et al. 2014. Identification of suitable reference genes for gene expression normalization in qRT-PCR analysis in watermelon. PLoS One 9:e90612

doi: 10.1371/journal.pone.0090612
[17]

McDowell JM, Huang S, McKinney EC, An Y, Meagher RB. 1996. Structure and evolution of the actin gene family in Arabidopsis thaliana. Genetics 142:587−602

doi: 10.1093/genetics/142.2.587
[18]

Meagher RB, McKinney EC, Kandasamy MK. 1999. Isovariant dynamics expand and buffer the responses of complex systems: the diverse plant actin gene family. The Plant Cell 11:995−1005

doi: 10.1105/tpc.11.6.995
[19]

Kropf DL, Bisgrove SR, Hable WE. 1998. Cytoskeletal control of polar growth in plant cells. Current Opinion in Cell Biology 10:117−22

doi: 10.1016/S0955-0674(98)80094-X
[20]

McCurdy DW, Kovar DR, Staiger CJ. 2001. Actin and actin-binding proteins in higher plants. Protoplasma 215:89−104

doi: 10.1007/BF01280306
[21]

Galatis B, Apostolakos P. 2004. The role of the cytoskeleton in the morphogenesis and function of stomatal complexes. New Phytologist 161:613−39

doi: 10.1046/j.1469-8137.2003.00986.x
[22]

Maisch J, Nick P. 2007. Actin is involved in auxin-dependent patterning. Plant Physiology 143:1695−704

doi: 10.1104/pp.106.094052
[23]

Rahman A, Bannigan A, Sulaman W, Pechter P, Blancaflor EB, et al. 2007. Auxin, actin and growth of the Arabidopsis thaliana primary root. The Plant Journal 50:514−28

doi: 10.1111/j.1365-313X.2007.03068.x
[24]

Yokota E, Shimmen T. 1999. The 135-kDa actin-bundling protein from lily pollen tubes arranges F-actin into bundles with uniform polarity. Planta 209:264−66

doi: 10.1007/s004250050631
[25]

Wang HJ, Wan AR, Jauh GY. 2008. An actin-binding protein, LlLIM1, mediates calcium and hydrogen regulation of actin dynamics in pollen tubes. Plant Physiology 147:1619−36

doi: 10.1104/pp.108.118604
[26]

Qu X, Zhang H, Xie Y, Wang J, Chen N, et al. 2013. Arabidopsis villins promote actin turnover at pollen tube tips and facilitate the construction of actin collars. The Plant Cell 25:1803−17

doi: 10.1105/tpc.113.110940
[27]

Tian M, Chaudhry F, Ruzicka DR, Meagher RB, Staiger CJ, et al. 2009. Arabidopsis Actin-Depolymerizing Factor AtADF4 mediates defense signal transduction triggered by the pseudomonas syringae effector AvrPphB. Plant Physiology 150:815−24

doi: 10.1104/pp.109.137604
[28]

Bi S, Li M, Liu C, Liu X, Cheng J, et al. 2022. Actin depolymerizing factor ADF7 inhibits actin bundling protein VILLIN1 to regulate root hair formation in response to osmotic stress in Arabidopsis. PLoS Genetics 18:e1010338

doi: 10.1371/journal.pgen.1010338
[29]

Huang J, Sun W, Ren J, Yang R, Fan J, et al. 2020. Genome-wide identification and characterization of actin-depolymerizing factor (ADF) family genes and expression analysis of responses to various stresses in Zea Mays L. International Journal of Molecular Sciences 21:1751

doi: 10.3390/ijms21051751
[30]

Cao H, Amin R, Niu L, Song Z, Dong B, et al. 2021. Multidimensional analysis of actin depolymerising factor family in pigeon pea under different environmental stress revealed specific response genes in each subgroup. Functional Plant Biology 48:180−94

doi: 10.1071/FP20190
[31]

Porter K, Day B. 2016. From filaments to function: the role of the plant actin cytoskeleton in pathogen perception, signaling and immunity. Journal of Integrative Plant Biology 58:299−311

doi: 10.1111/jipb.12445
[32]

Qian D, Xiang Y. 2019. Actin cytoskeleton as actor in upstream and downstream of calcium signaling in plant cells. International Journal of Molecular Sciences 20:1403

doi: 10.3390/ijms20061403
[33]

Grassotti A, Gimelli F. 2011. Bulb and cut flower production in the genus Lilium: current status and the future. Acta Horticulturae 900:21−35

doi: 10.17660/ActaHortic.2011.900.1
[34]

Xu L, Yang P, Yuan S, Feng Y, Xu H, et al. 2016. Transcriptome analysis identifies key candidate genes mediating purple ovary coloration in asiatic hybrid lilies. International Journal of Molecular Sciences 17:1881

doi: 10.3390/ijms17111881
[35]

Zhou Y, Wang Y, Xu F, Song C, Yang X, et al. 2022. Small HSPs play an important role in crosstalk between HSF-HSP and ROS pathways in heat stress response through transcriptomic analysis in lilies (Lilium longiflorum). BMC Plant Biology 22:202

doi: 10.1186/s12870-022-03587-9
[36]

Xin H, Zhang H, Chen L, Li X, Lian Q, et al. 2010. Cloning and characterization of HsfA2 from Lily (Lilium longiflorum). Plant Cell Reports 29:875−85

doi: 10.1007/s00299-010-0873-1
[37]

Wu Z, Liang J, Wang C, Zhao X, Zhong X, et al. 2018. Overexpression of lily HsfA3s in Arabidopsis confers increased thermotolerance and salt sensitivity via alterations in proline catabolism. Journal of Experimental Botany 69:2005−21

doi: 10.1093/jxb/ery035
[38]

Wang C, Zhou Y, Yang X, Zhang B, Xu F, et al. 2022. The heat stress transcription factor LlHsfA4 enhanced basic thermotolerance through regulating ROS metabolism in lilies (Lilium Longiflorum). International Journal of Molecular Sciences 23:572

doi: 10.3390/ijms23010572
[39]

Wang K, He J, Zhao Y, Wu T, Zhou X, et al. 2018. EAR1 negatively regulates ABA signaling by enhancing 2C protein phosphatase activity. The Plant Cell 30:815−34

doi: 10.1105/tpc.17.00875
[40]

Yuan C, Li C, Yan L, Jackson AO, Liu Z, et al. 2011. A high throughput barley stripe mosaic virus vector for virus induced gene silencing in monocots and dicots. PLoS One 6:e26468

doi: 10.1371/journal.pone.0026468
[41]

Amberg DC, Zahner JE, Mulholland JW, Pringle JR, Botstein D. 1997. Aip3p/Bud6p, a yeast actin-interacting protein that is involved in morphogenesis and the selection of bipolar budding sites. Molecular Biology of the Cell 8:729−53

doi: 10.1091/mbc.8.4.729
[42]

Dong T, Wang L, Wang R, Yang X, Jia W, et al. 2023. Transcriptomic analysis reveals candidate genes associated with anther development in Lilium Oriental Hybrid 'Siberia'. Frontiers in Plant Science 14:1128911

doi: 10.3389/fpls.2023.1128911
[43]

von Koskull-Döring P, Scharf KD, Nover L. 2007. The diversity of plant heat stress transcription factors. Trends in Plant Science 12:452−57

doi: 10.1016/j.tplants.2007.08.014
[44]

Ding Y, Shi Y, Yang S. 2020. Molecular regulation of plant responses to environmental temperatures. Molecular Plant 13:544−64

doi: 10.1016/j.molp.2020.02.004
[45]

Barrero RA, Umeda M, Yamamura S, Uchimiya H. 2002. Arabidopsis CAP regulates the actin cytoskeleton necessary for plant cell elongation and division. The Plant Cell 14:149−63

doi: 10.1105/tpc.010301
[46]

Xiang Y, Huang X, Wang T, Zhang Y, Liu Q, et al. 2007. ACTIN BINDING PROTEIN 29 from Lilium pollen plays an important role in dynamic actin remodeling. The Plant Cell 19:1930−46

doi: 10.1105/tpc.106.048413
[47]

Pivovarova AV, Chebotareva NA, Chernik IS, Gusev NB, Levitsky DI. 2007. Small heat shock protein Hsp27 prevents heat-induced aggregation of F-actin by forming soluble complexes with denatured actin. The FEBS Journal 274:5937−48

doi: 10.1111/j.1742-4658.2007.06117.x
[48]

Levitsky DI, Pivovarova AV, Mikhailova VV, Nikolaeva OP. 2008. Thermal unfolding and aggregation of actin - stabilization and destabilization of actin filaments. The FEBS Journal 275:4280−95

doi: 10.1111/j.1742-4658.2008.06569.x
[49]

Malerba M, Crosti P, Cerana R. 2010. Effect of heat stress on actin cytoskeleton and endoplasmic reticulum of tobacco BY-2 cultured cells and its inhibition by Co2+. Protoplasma 239:23−30

doi: 10.1007/s00709-009-0078-z
[50]

Ali A, Bharadwaj S, O'Carroll R, Ovsenek N. 1998. HSP90 interacts with and regulates the activity of heat shock factor 1 in Xenopus oocytes. Molecular and Cellular Biology 18:4949−60

doi: 10.1128/MCB.18.9.4949
[51]

Hahn A, Bublak D, Schleiff E, Scharf KD. 2011. Crosstalk between Hsp90 and Hsp70 chaperones and heat stress transcription factors in tomato. The Plant Cell 23:741−55

doi: 10.1105/tpc.110.076018
[52]

Port M, Tripp J, Zielinski D, Weber C, Heerklotz D, et al. 2004. Role of Hsp17.4-CII as coregulator and cytoplasmic retention factor of tomato heat stress transcription factor HsfA2. Plant Physiology 135:1457−70

doi: 10.1104/pp.104.042820
[53]

Eun SO, Lee Y. 1997. Actin filaments of guard cells are reorganized in response to light and abscisic acid. Plant Physiology 115:1491−98

doi: 10.1104/pp.115.4.1491
[54]

Hwang JU, Suh S, Yi H, Kim J, Lee Y. 1997. Actin filaments modulate both stomatal opening and inward K+-channel activities in guard cells of Vicia faba L. Plant Physiology 115:335−42

doi: 10.1104/pp.115.2.335
[55]

Franklin-Tong VE, Gourlay CW. 2008. A role for actin in regulating apoptosis/programmed cell death: evidence spanning yeast, plants and animals. Biochemical Journal 413:389−404

doi: 10.1042/BJ20080320
[56]

Wang C, Li J, Yuan M. 2007. Salt tolerance requires cortical microtubule reorganization in Arabidopsis. Plant and Cell Physiology 48:1534−47

doi: 10.1093/pcp/pcm123
[57]

Zhao Y, Pan Z, Zhang Y, Qu X, Zhang Y, et al. 2013. The actin-related Protein2/3 complex regulates mitochondrial-associated calcium signaling during salt stress in Arabidopsis. The Plant Cell 25:4544−59

doi: 10.1105/tpc.113.117887
[58]

Sun H, Qiao Z, Chua KP, Tursic A, Liu X, et al. 2018. Profilin negatively regulates formin-mediated actin assembly to modulate PAMP-triggered plant immunity. Current Biology 28:1882−1895.e7

doi: 10.1016/j.cub.2018.04.045
[59]

Wang X, Mao T. 2019. Understanding the functions and mechanisms of plant cytoskeleton in response to environmental signals. Current Opinion in Plant Biology 52:86−96

doi: 10.1016/j.pbi.2019.08.002
[60]

Li Y, Zhang X, Zhang Y, Ren H. 2022. Controlling the gate: the functions of the cytoskeleton in stomatal movement. Frontiers in Plant Science 13:849729

doi: 10.3389/fpls.2022.849729