[1] |
Niu S, Li J, Bo W, Yang W, Zuccolo A, et al. 2022. The Chinese pine genome and methylome unveil key features of conifer evolution. Cell 185:204−217.e14 doi: 10.1016/j.cell.2021.12.006 |
[2] |
Niu S, Li W, Li Y. 2022. Chinese pine (Pinus tabuliformis Carr.). Trends in Genetics 38:409−11 doi: 10.1016/j.tig.2022.01.006 |
[3] |
Warren RL, Keeling CI, Yuen MMS, Raymond A, Taylor GA, et al. 2015. Improved white spruce (Picea glauca) genome assemblies and annotation of large gene families of conifer terpenoid and phenolic defense metabolism. The Plant Journal 83:189−212 doi: 10.1111/tpj.12886 |
[4] |
Stevens KA, Wegrzyn JL, Zimin A, Puiu D, Crepeau M, et al. 2016. Sequence of the sugar pine megagenome. Genetics 204:1613−26 doi: 10.1534/genetics.116.193227 |
[5] |
Zimin AV, Stevens KA, Crepeau MW, Puiu D, Wegrzyn JL, et al. 2017. Erratum to: An improved assembly of the loblolly pine mega-genome using long-read single-molecule sequencing. GigaScience 6:gix072 doi: 10.1093/gigascience/gix072 |
[6] |
Fillatti JJ, Sellmer J, McCown B, Haissig B, Comai L. 1987. Agrobacterium mediated transformation and regeneration of Populus. Molecular & General Genetics 206:192−99 doi: 10.1007/BF00333574 |
[7] |
Huang Y, Diner AM, Karnosky DF. 1991. Agrobacterium rhizogenes-mediated genetic transformation and regeneration of a conifer: Larix decidua. In Vitro Cellular & Developmental Biology - Plant 27:201−07 doi: 10.1007/BF02632217 |
[8] |
Han K, Fleming P, Walker K, Loper M, Scott Chilton W, et al. 1994. Genetic transformation of mature Taxus: an approach to genetically control the in vitro production of the anticancer drug, taxol. Plant Science 95:187−96 doi: 10.1016/0168-9452(94)90092-2 |
[9] |
Levée V, Garin E, Klimaszewska K, Séguin A. 1999. Stable genetic transformation of white pine (Pinus strobus L.) after cocultivation of embryogenic tissues with Agrobacterium tumefaciens. Molecular breeding 5:429−40 doi: 10.1023/A:1009683605841 |
[10] |
Tang W, Lin J, Newton RJ. 2007. Okadaic acid and trifluoperazine enhance Agrobacterium-mediated transformation in eastern white pine. Plant Cell Reports 26:673−82 doi: 10.1007/s00299-006-0270-y |
[11] |
Grant JE, Cooper PA, Dale TM. 2004. Transgenic Pinus radiata from Agrobacterium tumefaciens-mediated transformation of cotyledons. Plant Cell Reports 22:894−902 doi: 10.1007/s00299-004-0769-z |
[12] |
Nigro SA, Makunga NP, Jones NB, Staden JV. 2008. An Agrobacterium-mediated system for gene transfer in Pinus patula. South African Journal of Botany 74:144−48 doi: 10.1016/j.sajb.2007.08.009 |
[13] |
Maleki SS, Mohammadi K, Ji KS. 2018. Study on factors influencing transformation efficiency in Pinus massoniana using Agrobacterium tumefaciens. Plant Cell, Tissue and Organ Culture (PCTOC) 133:437−45 doi: 10.1007/s11240-018-1388-7 |
[14] |
Bishop-Hurley SL, Zabkiewicz RJ, Grace L, Gardner RC, Wagner A, et al. 2001. Conifer genetic engineering: transgenic Pinus radiata (D. Don) and Picea abies (Karst) plants are resistant to the herbicide Buster. Plant Cell Reports 20:235−43 doi: 10.1007/s002990100317 |
[15] |
Grace LJ, Charity JA, Gresham B, Kay N, Walter C. 2005. Insect-resistant transgenic Pinus radiata. Plant Cell Reports 24:103−11 doi: 10.1007/s00299-004-0912-x |
[16] |
Parasharami VA, Naik VB, von Arnold S, Nadgauda RS, Clapham DH. 2006. Stable transformation of mature zygotic embryos and regeneration of transgenic plants of chir pine (Pinus roxbughii Sarg.). Plant Cell Reports 24:708−14 doi: 10.1007/s00299-005-0019-z |
[17] |
Tian LN, Charest PJ, Séguin A, Rutledge RG. 2000. Hygromycin resistance is an effective selectable marker for biolistic transformation of black spruce (Picea mariana). Plant Cell Reports 19:358−62 doi: 10.1007/s002990050740 |
[18] |
Wei T. 2001. Conifer genetic engineering: Particle bombardment and Agrobacterium-mediated gene transfer and its application in future forests. Journal of Forestry Research 12:219−28 doi: 10.1007/BF02856711 |
[19] |
Sarmast MK. 2016. Genetic transformation and somaclonal variation in conifers. Plant Biotechnology Reports 10:309−25 doi: 10.1007/s11816-016-0416-5 |
[20] |
Tang W, Newton RJ. 2003. Genetic transformation of conifers and its application in forest biotechnology. Plant Cell Reports 22:1−15 doi: 10.1007/s00299-003-0670-1 |
[21] |
Shin D, Podila GK, Huang Y, Karnosky DF. 1994. Transgenic larch expressing genes for herbicide and insect resistance. Canadian Journal of Forest Research 10:2059−67 doi: 10.1139/x94-264 |
[22] |
Tang W, Peng X, Newton RJ. 2005. Enhanced tolerance to salt stress in transgenic loblolly pine simultaneously expressing two genes encoding mannitol-1-phosphate dehydrogenase and glucitol-6-phosphate dehydrogenase. Plant Physiology and Biochemistry 43:139−46 doi: 10.1016/j.plaphy.2005.01.009 |
[23] |
Bříza J, Pavingerová D, Vlasák J, Niedermeierová H. 2013. Norway spruce (Picea abies) genetic transformation with modified Cry3A gene of Bacillus thuringiensis. Acta Biochimica Polonica 60:395−400 |
[24] |
Kang Y, Li W, Zhang L, Qi L. 2021. Over-expression of the cell-cycle gene LaCDKB1;2 promotes cell proliferation and the formation of normal cotyledonary embryos during Larix kaempferi somatic embryogenesis. Genes 12:1435 doi: 10.3390/genes12091435 |
[25] |
An P, Qin R, Zhao Q, Li X, Wang C, et al. 2022. Genetic transformation of LoHDZ2 and analysis of its function to enhance stress resistance in Larix olgensis. Scientific Reports 12:12831 doi: 10.1038/s41598-022-17191-2 |
[26] |
Lachance D, Hamel LP, Pelletier F, Valéro J, Bernier-Cardou M, et al. 2007. Expression of a Bacillus thuringiensis cry1Ab gene in transgenic white spruce and its efficacy against the spruce budworm (Choristoneura fumiferana). Tree Genetics & Genomes 3:153−67 doi: 10.1007/s11295-006-0072-y |
[27] |
Wadenbäck J, von Arnold S, Egertsdotter U, Walter MH, Grima-Pettenati J, et al. 2008. Lignin biosynthesis in transgenic Norway spruce plants harboring an antisense construct for cinnamoyl CoA reductase (CCR). Transgenic Research 17:379−92 doi: 10.1007/s11248-007-9113-z |
[28] |
Humara JM, Lopez M, Ordas RJ. 1999. Agrobacterium tumefaciens-mediated transformation of Pinus pinea L. cotyledons: an assessment of factors influencing the efficiency of uidA gene transfer. Plant Cell Reports 19:51−58 doi: 10.1007/s002990050709 |
[29] |
Le VQ, Belles-Isles J, Dusabenyagasani M, Tremblay FM. 2001. An improved procedure for production of white spruce (Picea glauca) transgenic plants using Agrobacterium tumefaciens. Journal of Experimental Botany 52:2089−95 doi: 10.1093/jexbot/52.364.2089 |
[30] |
Tang W, Xiao B, Fei Y. 2014. Slash pine genetic transformation through embryo cocultivation with A. tumefaciens and transgenic plant regeneration. In Vitro Cellular & Developmental Biology - Plant 50:199−209 doi: 10.1007/s11627-013-9551-7 |
[31] |
Liu S, Ma J, Liu H, Guo Y, Li W, et al. 2020. An efficient system for Agrobacterium-mediated transient transformation in Pinus tabuliformis. Plant Methods 16:52 doi: 10.1186/s13007-020-00594-5 |
[32] |
Grant JE, Cooper PA, Dale TM. 2015. Genetic transformation of micropropagated shoots of Pinus radiata D. Don. bioRxiv doi: 10.1101/030080 |
[33] |
Odell JT, Nagy F, Chua NH. 1985. Identification of DNA sequences required for activity of the cauliflower mosaic virus 35S promoter. Nature 313:810−12 doi: 10.1038/313810a0 |
[34] |
Lin X, Zhang W, Takechi K, Takio S, Ono K, et al. 2005. Stable genetic transformation of Larix gmelinii L. by particle bombardment of zygotic embryos. Plant Cell Reports 24:418−25 doi: 10.1007/s00299-005-0955-7 |
[35] |
Song Y, Bai X, Dong S, Yang Y, Dong H, et al. 2020. Stable and Efficient Agrobacterium-mediated genetic transformation of larch using embryogenic callus. Frontiers in Plant Science 11:584492 doi: 10.3389/fpls.2020.584492 |
[36] |
Ye S, Ding W, Bai W, Lu J, Zhou L, et al. 2023. Application of a novel strong promoter from Chinese fir (Cunninghamia lanceolate) in the CRISPR/Cas mediated genome editing of its protoplasts and transgenesis of rice and poplar. Frontiers in Plant Science 14:1179394 doi: 10.3389/fpls.2023.1179394 |
[37] |
Stavolone L, Kononova M, Pauli S, Ragozzino A, de Haan P, et al. 2003. Cestrum yellow leaf curling virus (CmYLCV) promoter: a new strong constitutive promoter for heterologous gene expression in a wide variety of crops. Plant Molecular Biology 53:663−713 doi: 10.1023/B:PLAN.0000019110.95420.bb |
[38] |
Christensen AH, Sharrock RA, Quail PH. 1992. Maize polyubiquitin genes: structure, thermal perturbation of expression and transcript splicing, and promoter activity following transfer to protoplasts by electroporation. Plant Molecular Biology 18:675−89 doi: 10.1007/BF00020010 |
[39] |
Gao S, Xu H, Cheng X, Chen M, Xu Z, et al. 2005. Improvement of wheat drought and salt tolerance by expression of a stress-inducible transcription factor GmDREB of soybean (Glycine max). Chinese Science Bulletin 50:2714−23 doi: 10.1007/BF02899641 |
[40] |
Wei H, Wang M, Moore PH, Albert HH. 2003. Comparative expression analysis of two sugarcane polyubiquitin promoters and flanking sequences in transgenic plants. Journal of Plant Physiology 160:1241−51 doi: 10.1078/0176-1617-01086 |
[41] |
Cornejo MJ, Luth D, Blankenship KM, Anderson OD, Blechl AE. 1993. Activity of a maize ubiquitin promoter in transgenic rice. Plant Molecular Biology 23:567−81 doi: 10.1007/BF00019304 |
[42] |
Takimoto I, Christensen AH, Quail PH, Uchimiya H, Toki S. 1994. Non-systemic expression of a stress-responsive maize polyubiquitin gene (Ubi-1) in transgenic rice plants. Plant Molecular Biology 26:1007−12 doi: 10.1007/BF00028868 |
[43] |
Ahmad N, Sant R, Bokan M, Steadman KJ, Godwin ID. 2012. Expression pattern of the alpha-kafirin promoter coupled with a signal peptide from Sorghum bicolor L. Moench. Journal of Biomedicine and Biotechnology 2012:752391 doi: 10.1155/2012/752391 |
[44] |
Christensen AH, Quail PH. 1996. Ubiquitin promoter-based vectors for high-level expression of selectable and/or screenable marker genes in monocotyledonous plants. Transgenic Research 5:213−18 doi: 10.1007/BF01969712 |
[45] |
Fang RX, Nagy F, Sivasubramaniam S, Chua NH. 1989. Multiple cis regulatory elements for maximal expression of the cauliflower mosaic virus 35S promoter in transgenic plants. The Plant Cell 1:141−50 doi: 10.1105/tpc.1.1.141 |
[46] |
Benfey PN, Ren L, Chua NH. 1990. Combinatorial and synergistic properties of CaMV 35S enhancer subdomains. The EMBO Journal 9:1685−96 doi: 10.1002/j.1460-2075.1990.tb08292.x |
[47] |
Nanasato Y, Mikami M, Futamura N, Endo M, Nishiguchi M, et al. 2021. CRISPR/Cas9-mediated targeted mutagenesis in Japanese cedar (Cryptomeria japonica D. Don). Scientific Reports 11:16186 doi: 10.1038/s41598-021-95547-w |
[48] |
Nigro SA, Makunga NP, Jones NB, van Staden J. 2004. A biolistic approach towards producing transgenic Pinus patula embryonal suspensor masses. Plant Growth Regulation 44:187−97 doi: 10.1007/s10725-004-4630-8 |
[49] |
Ellis DD, McCabe DE, Mcinnis S, Ramachandran R, Russel DR, et al. 1993. Stable transformation of Picea glauca by particle acceleration. Bio/Technology 11:84−89 doi: 10.1038/nbt0193-84 |
[50] |
Hassani SB, Trontin J, Raschke J, Zoglauer K, Rupps A. 2022. Constitutive overexpression of a conifer WOX2 homolog Affects somatic embryo development in Pinus pinaster and promotes somatic embryogenesis and organogenesis in Arabidopsis seedlings. Frontiers in Plant Science 13:838421 doi: 10.3389/fpls.2022.838421 |
[51] |
Wenck AR, Quinn M, Whetten RW, Pullman G, Sederoff R. 1999. High-efficiency Agrobacterium-mediated transformation of Norway spruce (Picea abies) and loblolly pine (Pinus taeda). Plant Molecular Biology 39:407−16 doi: 10.1023/A:1006126609534 |
[52] |
Tang W, Sederoff R, Whetten R. 2001. Regeneration of transgenic loblolly pine (Pinus taeda L.) from zygotic embryos transformed with Agrobacterium tumefaciens. Planta 213:981−89 doi: 10.1007/s004250100566 |
[53] |
Gould JH, Zhou Y, Padmanabhan V, Magallanes-Cedeno ME, Newton RJ. 2002. Transformation and regeneration of loblolly pine: shoot apex inoculation with Agrobacterium. Molecular Breeding 10:131−41 doi: 10.1023/A:1020324604279 |
[54] |
Tang W. 2003. Additional virulence genes and sonication enhance Agrobacterium tumefaciens-mediated loblolly pine transformation. Plant Cell Reports 21:555−62 doi: 10.1007/s00299-002-0550-0 |
[55] |
Tang W, Luo H, Newton RJ. 2004. Effects of antibiotics on the elimination of Agrobacterium tumefaciens from loblolly pine (Pinus taeda) zygotic embryo explants and on transgenic plant regeneration. Plant Cell, Tissue and Organ Culture 79:71−81 doi: 10.1007/s11240-004-4657-6 |
[56] |
Cerda F, Aquea F, Gebauer M, Medina C, Arce-Johnson P. 2002. Stable transformation of Pinus radiata embryogenic tissue by Agrobacterium tumefaciens. Plant Cell, Tissue and Organ Culture 70:251−57 doi: 10.1023/A:1016508031151 |
[57] |
Charity JA, Holland L, Grace LJ, Walter C. 2005. Consistent and stable expression of the nptII, uidA and bar genes in transgenic Pinus radiata after Agrobacterium tumefaciens-mediated transformation using nurse cultures. Plant Cell Reports 23:606−16 doi: 10.1007/s00299-004-0851-6 |
[58] |
Tereso S, Miguel C, Zoglauer K, Valle-Piquera C, Oliveira MM. 2006. Stable Agrobacterium-mediated transformation of embryogenic tissues from Pinus pinaster Portuguese genotypes. Plant Growth Regulation 50:57−68 doi: 10.1007/s10725-006-9126-2 |
[59] |
Alvarez JM, Ordás RJ. 2013. Stable Agrobacterium -mediated transformation of maritime pine based on kanamycin selection. The Scientific World Journal 2013:681792 doi: 10.1155/2013/681792 |
[60] |
Levee V, Lelu MA, Jouanin L, Cornu D, Pilate G. 1997. Agrobacterium tumefaciens-mediated transformation of hybrid larch (Larix kaempferi T L. decidua) and transgenic plant regenerationn. Plant Cell Reports 16:680−85 doi: 10.1007/s002990050301 |
[61] |
Zhang S, Yan S, An P, Cao Q, Wang C, et al. 2021. Embryogenic callus induction from immature zygotic embryos and genetic transformation of Larix kaempferi 3x Larix gmelinii 9. PLoS ONE 16:e258654 doi: 10.1371/journal.pone.0258654 |
[62] |
Drake PMW, John A, Power JB, Davey MR. 1997. Expression of the gus A gene in embryogenic cell lines of Sitka spruce following Agrobacterium-mediated transformation. Journal of Experimental Botany 48:151−55 doi: 10.1093/jxb/48.1.151 |
[63] |
Klimaszewska K, Lachance D, Pelletier G, Lelu MA, Séguin A. 2001. Regeneration of transgenic Picea glauca, P. mariana, and P. abies after cocultivation of embryogenic tissue with Agrobacterium tumefaciens. In Vitro Cellular & Developmental Biology - Plant 37:748−55 doi: 10.1007/s11627-001-0124-9 |
[64] |
Klimaszewska K, Pelletier G, Overton C, Stewart D, Rutledge RG. 2010. Hormonally regulated overexpression of Arabidopsis WUS and conifer LEC1 (CHAP3A) in transgenic white spruce: implications for somatic embryo development and somatic seedling growth. Plant Cell Reports 29:723−34 doi: 10.1007/s00299-010-0859-z |
[65] |
Salaj T, Moravčíková J, Vooková B, Salaj J. 2009. Agrobacterium-mediated transformation of embryogenic tissues of hybrid firs (Abies spp.) and regeneration of transgenic emblings. Biotechnology Letters 31:647−52 doi: 10.1007/s10529-009-9923-6 |
[66] |
Lee H, Moon HK, Park SH. 2014. Agrobacterium-mediated transformation via somatic embryogenesis system in Korean fir (Abies koreana Wil.), a Korean native conifer. Korean Journal of Plant Resources 27:242−48 doi: 10.7732/kjpr.2014.27.3.242 |
[67] |
Taniguchi T, Kurita M, Ohmiya Y, Kondo T. 2005. Agrobacterium tumefaciens-mediated transformation of embryogenic tissue and transgenic plant regeneration in Chamaecyparis obtusa Sieb. et Zucc. Plant Cell Reports 23:796−802 doi: 10.1007/s00299-004-0895-7 |
[68] |
Konagaya K, Kurita M, Taniguchi T. 2013. High-efficiency Agrobacterium-mediated transformation of Cryptomeria japonica D. Don by co-cultivation on filter paper wicks followed by meropenem treatment to eliminate Agrobacterium. Plant Biotechnology 30:523−28 doi: 10.5511/plantbiotechnology.13.0909a |
[69] |
Konagaya K, Nanasato Y, Taniguchi T. 2020. A protocol for Agrobacterium-mediated transformation of Japanese cedar, Sugi (Cryptomeria japonica D. Don) using embryogenic tissue explants. Plant Biotechnology 37:147−56 doi: 10.5511/plantbiotechnology.20.0131a |
[70] |
Le-Feuvre R, Triviño C, Sabja AM, Bernier-Cardou M, Moynihan MR, et al. 2013. Organic nitrogen composition of the tissue culture medium influences Agrobacterium tumefaciens growth and the recovery of transformed Pinus radiata embryonal masses after cocultivation. In Vitro Cellular & Developmental Biology - Plant 49:30−40 doi: 10.1007/s11627-013-9492-1 |
[71] |
Ozyigit II, Yucebilgili Kurtoglu K. 2020. Particle bombardment technology and its applications in plants. Molecular Biology Reports 47:9831−47 doi: 10.1007/s11033-020-06001-5 |
[72] |
Tian L, Séguin A, Charest PJ. 1997. Expression of the green fluorescent protein gene in conifer tissues. Plant Cell Reports 16:267−71 doi: 10.1007/BF01088278 |
[73] |
Stomp AM, Weissinger A, Sederoff RR. 1991. Transient expression from microprojectile-mediated DNA transfer in pinus taeda. Plant Cell Reports 10:187−90 doi: 10.1007/BF00234292 |
[74] |
Goldfarb B, Strauss SH, Howe GT, Zaerr JB. 1991. Transient gene expression of microprojectile-introduced DNA in Douglas-fir cotyledons. Plant Cell Reports 10:517−521 doi: 10.1007/BF00234585 |
[75] |
Klimaszewska K, Devantier Y, Lachance D, Lelu MA, Charest PJ. 1997. Larix laricina (tamarack): somatic embryogenesis and genetic transformation. Canadian Journal of Forest Research 27:538−50 doi: 10.1139/x96-208 |
[76] |
Duchesn LC, Charet PJ. 1992. Effect of promoter sequence on transient expression of the β-glucuronidase gene in embryogenic calli of Larix × eurolepis and Picea mariana following microprojection. Canadian Journal of Botany 70:175−80 doi: 10.1139/b92-02 |
[77] |
Robertson D, Weissinger AK, Ackley R, Glover S, Sederoff RR. 1992. Genetic transformation of Norway spruce (Picea abies (L.) Karst) using somatic embryo explants by microprojectile bombardment. Plant Molecular Biology 19:925−35 doi: 10.1007/BF00040525 |
[78] |
Brukhin V, Clapham D, Elfstrand M, von Arnold S. 2000. Basta tolerance as a selectable and screening marker for transgenic plants of Norway spruce. Plant Cell Reports 19:899−903 doi: 10.1007/s002990000217 |
[79] |
Haggman HM, Aronen TS, Nikkanen TO. 1997. Gene transfer by particle bombardment to Norway spruce and Scots pine pollen. Canadian Journal of Forest Research 27:928−35 doi: 10.1139/x97-024 |
[80] |
Yibrah HS, Manders G, Clapham DH, Von Arnold S. 1994. Biological factors affecting transient transformation in embryogenic suspension cultures of Picea abies. Journal of Plant Physiology 144:472−78 doi: 10.1016/S0176-1617(11)82125-5 |
[81] |
Hay I, Lachance D, Von Aderkas P, Charest PJ. 1994. Transient chimeric gene expression in pollen of five conifer species following microparticle bombardment. Canadian Journal of Forest Research 24:2417−23 doi: 10.1139/x94-312 |
[82] |
Ellis DD, McCabe D, Russell D, Martinell B, McCown BH. 1991. Expression of inducible angiosperm promoters in a gymnosperm, Picea glauca (white spruce). Plant Molecular Biology 17:19−27 doi: 10.1007/BF00036802 |
[83] |
Walter C, Grace LJ, Wagner A, White DWR, Walden AR, et al. 1998. Stable transformation and regeneration of transgenic plants of Pinus radiata D. Don. Plant Cell Reports 17:460−68 doi: 10.1007/s002990050426 |
[84] |
Charest PJ, Devantier Y, Lachance D. 1996. Stable genetic transformation of Picea mariana (Black spruce) via microprojectile bombardment. In Vitro - Plant 32:91−99 doi: 10.1007/BF02823137 |
[85] |
Find JI, Charity JA, Grace LJ, Kristensen MMMH, Krogstrup P, et al. 2005. Stable genetic transformation of embryogenic cultures of Abies nordmanniana (nordmann fir) and regeneration of transgenic plants. In Vitro Cellular & Developmental Biology - Plant 41:725−30 doi: 10.1079/IVP2005704 |
[86] |
Salaj T, Moravčíková J, Grec-Niquet L, Salaj J. 2005. Stable transformation of embryogenic tissues of Pinus nigra Arn. using a biolistic method. Biotechnology Letters 27:899−903 doi: 10.1007/s10529-005-7178-4 |
[87] |
Campbell MA, Kinlaw CS, Neale DB. 1992. Expression of luciferase and β-glucuronidase in Pinus radiata suspension cells using electroporation and particle bombardment. Canadian Journal of Forest Research 22:2014−18 doi: 10.1139/x92-265 |
[88] |
Walter C, Smith DR, Connett MB, Grace L, White DW. 1994. A biolistic approach for the transfer and expression of a gusA. reporter gene in embryogenic cultures of Pinus radiata. Plant Cell Reports 14:69−74 doi: 10.1007/BF00233764 |
[89] |
Rey M, González MV, Ordás RJ, Tavazza R, Ancora G. 1996. Factors affecting transient gene expression in cultured radiata pine cotyledons following particle bombardment. Physiologia Plantarum 96:630−36 doi: 10.1111/j.1399-3054.1996.tb00236.x |
[90] |
Möller R, McDonald AG, Walter C, Harris PJ. 2003. Cell differentiation, secondary cell-wall formation and transformation of callus tissue of Pinus radiata D. Don. Planta 217:736−47 doi: 10.1007/s00425-003-1053-0 |
[91] |
Aronen T, Häggman H, Hohtola A. 1994. Transient beta-glucuronidase expression in Scots pine tissues derived from mature trees. Canadian Journal of Forest Research 24:2006−11 doi: 10.1139/x94-257 |
[92] |
Fernando DD, Owens JN, Misra S. 2000. Transient gene expression in pine pollen tubes following particle bombardment. Plant Cell Reports 19:224−28 doi: 10.1007/s002990050003 |
[93] |
Bommineni VR, Chibbar RN, Datla RSS, Tsang EWT. 1993. Transformation of white spruce (Picea glauca) somatic embryos by microprojectile bombardment. Plant Cell Reports 13:17−23 doi: 10.1007/BF00232308 |
[94] |
Duchesne LC, Charest PJ. 1991. Transient expression of the β-glucuronidase gene in embryogenic callus of Picea mariana following microprojection. Plant Cell Reports 10:191−94 doi: 10.1007/BF00234293 |
[95] |
Walter C, Grace LJ, Donaldson SS, Moody J, Gemmell JE, et al. 1999. An efficient Biolistic® transformation protocol for Picea abies embryogenic tissue and regeneration of transgenic plants. Canadian Journal of Forest Research 29:1539−46 doi: 10.1139/x99-116 |
[96] |
Davey MR, Anthony P, Power JB, Lowe KC. 2005. Plant protoplasts: status and biotechnological perspectives. Biotechnology Advances 23:131−71 doi: 10.1016/j.biotechadv.2004.09.008 |
[97] |
Xu Y, Li R, Luo H, Wang Z, Li M, et al. 2022. Protoplasts: small cells with big roles in plant biology. Trends in Plant Science 27:828−29 doi: 10.1016/j.tplants.2022.03.010 |
[98] |
Poddar S, Tanaka J, Cate JHD, Staskawicz B, Cho MJ. 2020. Efficient isolation of protoplasts from rice calli with pause points and its application in transient gene expression and genome editing assays. Plant Methods 16:151 doi: 10.1186/s13007-020-00692-4 |
[99] |
Wang Q, Yu G, Chen Z, Han J, Hu Y, et al. 2021. Optimization of protoplast isolation, transformation and its application in sugarcane (Saccharum spontaneum L). The Crop Journal 9:133−42 doi: 10.1016/j.cj.2020.05.006 |
[100] |
Wang J, Wang Y, Lü T, Yang X, Liu J, et al. 2022. An efficient and universal protoplast isolation protocol suitable for transient gene expression analysis and single-cell RNA sequencing. International Journal of Molecular Sciences 23:3419 doi: 10.3390/ijms23073419 |
[101] |
Bekkaoui F, Pilon M, Laine E, Raju DSS, Crosby WL, et al. 1988. Transient gene expression in electroporated Picea glauca protoplasts. Plant Cell Reports 7:481−84 doi: 10.1007/BF00272736 |
[102] |
Gupta PK, Dandekar AM, Durzan DJ. 1988. Somatic proembryo formation and transient expression of a luciferase gene in Douglas fir and loblolly pine protoplasts. Plant Science 58:85−92 doi: 10.1016/0168-9452(88)90157-4 |
[103] |
Tautorus TE, Bekkaoui F, Pilon M, Datla RSS, Crosby WL, et al. 1989. Factors affecting transient gene expression in electroporated black spruce (Picea mariana) and jack pine (Pinus banksiana) protoplasts. Theoretical and Applied Genetics 78:531−36 doi: 10.1007/BF00290838 |
[104] |
Bekkaoui F, Datla RSS, Pilon M, Tautorus TE, Crosby WL, et al. 1990. The effects of promoter on transient expression in conifer cell lines. Theoretical and Applied Genetics 79:353−59 doi: 10.1007/BF01186079 |
[105] |
Wei W, Zhang Q, Wu J, Ma X, Gu L. 2021. Establishment of high-efficiency callus induction and transient transformation system of Chinese fir. Molecular Plant Breeding 2021:1−15 |
[106] |
Berlyn GP, Beck RC, Renfroe MH. 1986. Tissue culture and the propagation and genetic improvement of conifers: problems and possibilities. Tree Physiology 1:227−40 doi: 10.1093/treephys/1.2.227 |
[107] |
Sarmast MK. 2018. In vitro propagation of conifers using mature shoots. Journal of Forestry Research 29:565−74 doi: 10.1007/s11676-018-0608-7 |
[108] |
Burrows GE, Doley DD, Haines RJ, Nikles DG. 1988. In vitro propagation of Araucaria cunninghamii and other species of the araucariaceae via axillary meristems. Australian Journal of Botany 36:665−76 doi: 10.1071/BT9880665 |
[109] |
Hasnain S, Cheliak W. 1986. Tissue culture in forestry: economic and genetic potential. The Forestry Chronicle 62:219−25 doi: 10.5558/tfc62219-4 |
[110] |
Igasaki T, Sato T, Akashi N, Mohri T, Maruyama E, et al. 2003. Somatic embryogenesis and plant regeneration from immature zygotic embryos of Cryptomeria japonica D. Don. Plant Cell Reports 22:239−43 doi: 10.1007/s00299-003-0687-5 |
[111] |
Hu R, Sun Y, Wu B, Duan H, Zheng H, et al. 2017. Somatic embryogenesis of immature Cunninghamia lanceolata (Lamb.) hook zygotic embryos. Scientific Reports 7:56 doi: 10.1038/s41598-017-00156-1 |
[112] |
Delvas N, Bauce É, Labbé C, Ollevier T, Bélanger R. 2011. Phenolic compounds that confer resistance to spruce budworm. Entomologia Experimentalis et Applicata 141:35−44 doi: 10.1111/j.1570-7458.2011.01161.x |
[113] |
Legault J, Girard-Lalancette K, Dufour D, Pichette A. 2013. Antioxidant potential of bark extracts from boreal forest conifers. Antioxidants 2:77−89 doi: 10.3390/antiox2030077 |
[114] |
Sabri N, Pelissier B, Teissie J. 1996. Transient and stable electrotransformations of intact black Mexican sweet maize cells are obtained after preplasmolysis. Plant Cell Reports 15:924−28 doi: 10.1007/BF00231589 |
[115] |
Ortiz-Matamoros MF, Villanueva MA, Islas-Flores T. 2018. Genetic transformation of cell-walled plant and algae cells: delivering DNA through the cell wall. Briefings in Functional Genomics 17:26−33 doi: 10.1093/bfgp/elx014 |
[116] |
Nagle M, Déjardin A, Pilate G, Strauss SH. 2018. Opportunities for innovation in genetic transformation of forest trees. Frontiers in Plant Science 9:1443 doi: 10.3389/fpls.2018.01443 |
[117] |
Lowe K, Wu E, Wang N, Hoerster G, Hastings C, et al. 2016. Morphogenic regulators Baby boom and Wuschel improve monocot transformation. The Plant Cell 28:1998−2015 doi: 10.1105/tpc.16.00124 |
[118] |
Mookkan M, Nelson-Vasilchik K, Hague J, Zhang ZJ, Kausch AP. 2017. Selectable marker independent transformation of recalcitrant maize inbred B73 and sorghum P898012 mediated by morphogenic regulators BABY BOOM and WUSCHEL2. Plant Cell Reports 36:1477−91 doi: 10.1007/s00299-017-2169-1 |
[119] |
Cody JP, Maher MF, Nasti RA, Starker CG, Chamness JC, et al. 2023. Direct delivery and fast-treated Agrobacterium co-culture (Fast-TrACC) plant transformation methods for Nicotiana benthamiana. Nature Protocols 18:81−107 doi: 10.1038/s41596-022-00749-9 |
[120] |
Cao X, Xie H, Song M, Lu J, Ma P, et al. 2023. Cut–dip–budding delivery system enables genetic modifications in plants without tissue culture. The Innovation 4:100345 doi: 10.1016/j.xinn.2022.100345 |
[121] |
Hakman IC, von Arnold S. 1983. Isolation and growth of protoplasts from cell suspensions of Pinus contorta Dougl. ex Loud. Plant Cell Reports 2:92−94 doi: 10.1007/BF00270174 |
[122] |
Menon M, Bagley JC, Page GFM, Whipple AV, Schoettle AW, et al. 2021. Adaptive evolution in a conifer hybrid zone is driven by a mosaic of recently introgressed and background genetic variants. Communications Biology 4:160 doi: 10.1038/s42003-020-01632-7 |
[123] |
Cui Y, Zhao J, Gao Y, Zhao R, Zhang J, et al. 2021. Efficient multi-sites genome editing and plant regeneration via somatic embryogenesis in Picea glauca. Frontiers in Plant Science 12:751891 doi: 10.3389/fpls.2021.751891 |
[124] |
Poovaiah C, Phillips L, Geddes B, Reeves C, Sorieul M, et al. 2021. Genome editing with CRISPR/Cas9 in Pinus radiata (D. Don). BMC Plant Biology 21:363 doi: 10.1186/s12870-021-03143-x |
[125] |
Davis ME, Zuckerman JE, Choi CHJ, Seligson D, Tolcher A, et al. 2010. Evidence of RNAi in humans from systemically administered siRNA via targeted nanoparticles. Nature 464:1067−70 doi: 10.1038/nature08956 |
[126] |
Yan M, Du J, Gu Z, Liang M, Hu Y, et al. 2010. A novel intracellular protein delivery platform based on single-protein nanocapsules. Nature Nanotechnology 5:48−53 doi: 10.1038/nnano.2009.341 |