[1]

Farr D. 2010. Fungal databases. http://nt.ars-grin.gov/fungaldatabases/

[2]

Lane CR, Beales PA, O'Neill TM, McPherson GM, Finlay AR, et al. 2005. First report of Impatiens downy mildew (Plasmopara obducens) in the UK. Plant pathology 54:243

doi: 10.1111/j.1365-3059.2005.01133.x
[3]

Salgado-Salazar C, Rivera Y, Veltri D, Crouch JA. 2015. Polymorphic SSR markers for Plasmopara obducens (Peronosporaceae), the newly emergent downy mildew pathogen of Impatiens (Balsaminaceae). Applications in Plant Sciences 3:1500073

doi: 10.3732/apps.1500073
[4]

Bhattarai K, Wang W, Cao Z, Deng Z. 2018. Comparative analysis of impatiens leaf transcriptomes reveal candidate genes for resistance to downy mildew caused by Plasmopara obducens. International Journal of Molecular Sciences 19:2057

doi: 10.3390/ijms19072057
[5]

Jones JDG, Dangl JL. 2006. The plant immune system. Nature 444:323−29

doi: 10.1038/nature05286
[6]

Dodds PN, Rathjen JP. 2010. Plant immunity: towards an integrated view of plant–pathogen interactions. Nature Reviews Genetics 11:539−48

doi: 10.1038/nrg2812
[7]

Sanseverino W, Hermoso A, D'Alessandro R, Vlasova A, Andolfo G, et al. 2013. PRGdb 2.0: towards a community-based database model for the analysis of R-genes in plants. Nucleic Acids Research 41:D1167−D1171

doi: 10.1093/nar/gks1183
[8]

van Schie CCN, Takken FLW. 2014. Susceptibility genes 101: how to be a good host. Annual Review of Phytopathology 52:551−81

doi: 10.1146/annurev-phyto-102313-045854
[9]

Naveed ZA, Wei X, Chen J, Mubeen H, Ali GS. 2020. The PTI to ETI continuum in Phytophthora-plant interactions. Frontiers in Plant Science 11:593905

doi: 10.3389/fpls.2020.593905
[10]

Sun K, Wolters AMA, Vossen JH, Rouwet ME, Loonen AEHM, et al. 2016. Silencing of six susceptibility genes results in potato late blight resistance. Transgenic Research 25:731−42

doi: 10.1007/s11248-016-9964-2
[11]

Ma T, Chen S, Liu J, Fu P, Wu W, et al. 2021. Plasmopara viticola effector PvRXLR111 stabilizes VvWRKY40 to promote virulence. Molecular Plant Pathology 22:231−42

doi: 10.1111/mpp.13020
[12]

Müller M, Seifert S, Lübbe T, Leuschner C, Finkeldey R. 2017. De novo transcriptome assembly and analysis of differential gene expression in response to drought in European beech. PLoS ONE 12:e0184167

doi: 10.1371/journal.pone.0184167
[13]

Conesa A, Götz S, García-Gómez JM, Terol J, Talón M, et al. 2005. Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 21:3674−76

doi: 10.1093/bioinformatics/bti610
[14]

Du Z, Zhou X, Ling Y, Zhang Z, Su Z. 2010. agriGO: a GO analysis toolkit for the agricultural community. Nucleic Acids Research 38:W64−W70

doi: 10.1093/nar/gkq310
[15]

Thimm O, Bläsing O, Gibon Y, Nagel A, Meyer S, et al. 2004. mapman: a user driven tool to display genomics data sets onto diagrams of metabolic pathways and other biological processes. The Plant Journal 37:914−39

doi: 10.1111/j.1365-313X.2004.02016.x
[16]

Usadel B, Poree F, Nagel A, Lohse M, Czedik-Eysenberg A, et al. 2009. A guide to using MapMan to visualize and compare Omics data in plants: a case study in the crop species, Maize. Plant, Cell & Environment 32:1211−29

doi: 10.1111/j.1365-3040.2009.01978.x
[17]

Todorovska E. 2007. Retrotransposons and their role in plant—genome evolution. Biotechnology & Biotechnological Equipment 21:294−305

doi: 10.1080/13102818.2007.10817464
[18]

Shen Y, Liu N, Li C, Wang X, Xu X, et al. 2017. The early response during the interaction of fungal phytopathogen and host plant. Open Biology 7:170057

doi: 10.1098/rsob.170057
[19]

Tang D, Wang G, Zhou J. 2017. Receptor kinases in plant-pathogen interactions: more than pattern recognition. The Plant Cell 29:618−37

doi: 10.1105/tpc.16.00891
[20]

Delteil A, Gobbato E, Cayrol B, Estevan J, Michel-Romiti C, et al. 2016. Several wall-associated kinases participate positively and negatively in basal defense against rice blast fungus. BMC Plant Biology 16:17

doi: 10.1186/s12870-016-0711-x
[21]

Afzal Naveed Z, Huguet-Tapia JC, Ali GS. 2019. Transcriptome profile of Carrizo citrange roots in response to Phytophthora parasitica infection. Journal of Plant Interactions 14:187−204

doi: 10.1080/17429145.2019.1609106
[22]

Liu Y, Wu H, Chen H, Liu Y, He J, et al. 2015. A gene cluster encoding lectin receptor kinases confers broad-spectrum and durable insect resistance in rice. Nature Biotechnology 33:301−05

doi: 10.1038/nbt.3069
[23]

Loutre C, Wicker T, Travella S, Galli P, Scofield S, et al. 2009. Two different CC-NBS-LRR genes are required for Lr10-mediated leaf rust resistance in tetraploid and hexaploid wheat. The Plant Journal 60:1043−54

doi: 10.1111/j.1365-313X.2009.04024.x
[24]

Zhu Y, Shao J, Zhou Z, Davis RE. 2017. Comparative transcriptome analysis reveals a preformed defense system in apple root of a resistant genotype of G.935 in the absence of pathogen. International Journal of Plant Genomics 2017:8950746

doi: 10.1155/2017/8950746
[25]

Naveed ZA, Ali GS. 2018. Comparative transcriptome analysis between a resistant and a susceptible wild tomato accession in response to Phytophthora parasitica. International Journal of Molecular Sciences 19:3735

doi: 10.3390/ijms19123735
[26]

Vorwerk S, Schiff C, Santamaria M, Koh S, Nishimura M, et al. 2007. EDR2 negatively regulates salicylic acid-based defenses and cell death during powdery mildew infections of Arabidopsis thaliana. BMC Plant Biology 7:35

doi: 10.1186/1471-2229-7-35
[27]

Judelson HS, Ah-Fong AMV. 2019. Exchanges at the plant-oomycete interface that influence disease. Plant Physiology 179:1198−211

doi: 10.1104/pp.18.00979
[28]

Alzohairy AM, Sabir JSM, Gyulai G, Younis RAA, Jansen RK, et al. 2014. Environmental stress activation of plant long-terminal repeat retrotransposons. Functional Plant Biology 41:557−67

doi: 10.1071/FP13339
[29]

Yang ZN, Ye XR, Molina J, Roose ML, Mirkov TE. 2003. Sequence analysis of a 282-kilobase region surrounding the citrus Tristeza virus resistance gene (Ctv) locus in Poncirus trifoliata L. Raf. Plant Physiology 131:482−92

doi: 10.1104/pp.011262
[30]

Grandbastien MA, Lucas H, Morel JB, Mhiri C, Vernhettes S, et al. 1997. The expression of the tobacco Tnt1 retrotransposon is linked to plant defense responses. Genetica 100:241−52

[31]

Pouteau S, Grandbastien MA, Boccara M. 1994. Microbial elicitors of plant defence responses activate transcription of a retrotransposon. The Plant Journal 5:535−42

doi: 10.1046/j.1365-313X.1994.05040535.x
[32]

Brilli M, Asquini E, Moser M, Bianchedi PL, Perazzolli M, et al. 2018. A multi-omics study of the grapevine-downy mildew (Plasmopara viticola) pathosystem unveils a complex protein coding-and noncoding-based arms race during infection. Scientific Reports 8:757

doi: 10.1038/s41598-018-19158-8
[33]

Raaymakers TM, Van den Ackerveken G. 2016. Extracellular recognition of oomycetes during biotrophic infection of plants. Frontiers in Plant Science 7:906

doi: 10.3389/fpls.2016.00906
[34]

Fu S, Shao J, Roy A, Brlansky RH, Zhou C, et al. 2019. Transcriptomic analyses reveal physiological changes in sweet orange roots affected by citrus blight. BMC Genomics 20:969

doi: 10.1186/s12864-019-6339-0
[35]

Xu M, Cruz CMV, Fu B, Zhu L, Zhou Y, et al. 2011. Different patterns of gene expression in rice varieties undergoing a resistant or susceptible interaction with the bacterial leaf streak pathogen. African Journal of Biotechnology 10:14419−38

doi: 10.5897/AJB11.1317