[1]

Galluzzi G, Seyoum A, Halewood M, Noriega IL, Welch EW. 2020. The role of genetic resources in breeding for climate change: the case of public breeding programmes in eighteen developing countries. Plants 9:1129

doi: 10.3390/plants9091129
[2]

Mwadzingeni L, Afari-Sefa V, Shimelis H, N’Danikou S, Figlan S, et al. 2021. Unpacking the value of traditional African vegetables for food and nutrition security. Food Security 13:1215−26

doi: 10.1007/s12571-021-01159-7
[3]

Dinssa FF, Stoilova T, Nenguwo N, Aloyce A, Tenkouano A, et al. 2015. Traditional vegetables: improvement and development in sub-Saharan Africa at AVRDC–The World Vegetable Center. Acta Horticulturae 1102:21−28

doi: 10.17660/actahortic.2015.1102.2
[4]

van Zonneveld M, Kindt R, Solberg SØ, N’Danikou S, Dawson IK. 2021. Diversity and conservation of traditional African vegetables: priorities for action. Diversity and Distributions 27:216−32

doi: 10.1111/ddi.13188
[5]

Panis B, Nagel M, Van den Houwe I. 2020. Challenges and prospects for the conservation of crop genetic resources in field genebanks, in in vitro collections and/or in liquid nitrogen. Plants 9:1634

doi: 10.3390/plants9121634
[6]

Sheteiwy M. 2013. Effect of seed storage periods, conditions and materials on germination of some soybean seed cultivars. Journal of Experimental Agriculture International 3(4):1020−43

doi: 10.9734/ajea/2013/3590
[7]

Dantas AF, Fascineli ML, José SCBR, Pádua JG, Gimenes MA, et al. 2019. Loss of genetic integrity in artificially aged seed lots of rice (Oryza sativa L.) and common bean (Phaseolus vulgaris L.). Mutation Research/Genetic Toxicology and Environmental Mutagenesis 846:403080

doi: 10.1016/j.mrgentox.2019.07.008
[8]

Pukacka S, Ratajczak E. 2007. Age-related biochemical changes during storage of beech (Fagus sylvatica L.) seeds. Seed Science Research 17:45−53

doi: 10.1017/s0960258507629432
[9]

Kurek K, Plitta-Michalak B, Ratajczak E. 2019. Reactive oxygen species as potential drivers of the seed aging process. Plants 8:174

doi: 10.3390/plants8060174
[10]

Jeevan Kumar SP, Rajendra Prasad S, Banerjee R, Thammineni C. 2015. Seed birth to death: dual functions of reactive oxygen species in seed physiology. Annals of Botany 116:663−68

doi: 10.1093/aob/mcv098
[11]

Brar NS, Kaushik P, Dudi BS. 2019. Assessment of natural ageing related physio-biochemical changes in onion seed. Agriculture 9:163

doi: 10.3390/agriculture9080163
[12]

Demirkaya M, Dietz KJ, Sivritepe HO. 2010. Changes in antioxidant enzymes during ageing of onion seeds. Notulae Botanicae Horti Agrobotanici Cluj-Napoca 38:49−52

[13]

Ebone LA, Caverzan A, Silveira DC, Siqueira LO, Lângaro NC, et al. 2020. Biochemical profile of the soybean seed embryonic axis and its changes during accelerated aging. Biology 9:186

doi: 10.3390/biology9080186
[14]

Daniel IO, Adabale OW, Adeboye KA, Aladele ES, Oduoye OT, et al. 2014. Evaluation of genetic integrity of tomato seeds during ageing by microsatellite markers. Nigerian Journal of Genetics 28:29−33

doi: 10.1016/j.nigjg.2015.09.001
[15]

Kehinde TO, Ajala MO, Daniel IO, Oyelakin OO. 2013. Physiological and genetic integrity of amaranth (Amaranthus spp. ) seeds during storage. International Journal of Plant Breeding and Genetics 7:35−46

doi: 10.3923/ijpbg.2013.35.46
[16]

Filippova GV, Filippov EV, Prokopiev IA, Shein AA, Neustroyev AN. 2019. Integrity of nuclear DNA and physio-biochemical indicators of Pisum sativum L. seeds under accelerated aging. Agricultural Biology 54:538−47

doi: 10.15389/agrobiology.2019.3.538eng
[17]

Koedrith P, Kim H, Weon JI, Seo YR. 2013. Toxicogenomic approaches for understanding molecular mechanisms of heavy metal mutagenicity and carcinogenicity. International Journal of Hygiene and Environmental Health 216:587−98

doi: 10.1016/j.ijheh.2013.02.010
[18]

Kuchařová M, Hronek M, Rybáková K, Zadák Z, Štětina R, et al. 2019. Comet assay and its use for evaluating oxidative DNA damage in some pathological states. Physiological Research 68:1−15

doi: 10.33549/physiolres.933901
[19]

Plitta-Michalak BP, Ramos AA, Pupel P, Michalak M. 2022. Oxidative damage and DNA repair in desiccated recalcitrant embryonic axes of Acer pseudoplatanus L. BMC Plant Biology 22:40

doi: 10.1186/s12870-021-03419-2
[20]

Hay FR, Whitehouse KJ. 2017. Rethinking the approach to viability monitoring in seed genebanks. Conservation Physiology 5:cox009

doi: 10.1093/conphys/cox009
[21]

Lamichaney A, Parihar AK, Hazra KK, Dixit GP, Katiyar PK, et al. 2021. Untangling the influence of heat stress on crop phenology, seed set, seed weight, and germination in field pea (Pisum sativum L.). Frontiers in Plant Science 12:635868

doi: 10.3389/fpls.2021.635868
[22]

ISTA. 2018. Thousand-seed weight (TSW) determination. International Rules for Seed Testing 1:10−12

doi: 10.15258/istarules.2019.10
[23]

Hay FR, Rezaei S, Buitink J. 2022. Seed moisture isotherms, sorption models, and longevity. Frontiers in Plant Science 13:891913

doi: 10.3389/fpls.2022.891913
[24]

ISTA. 2021. The germination test. International Rules for Seed Testing 1:5−56

doi: 10.15258/istarules.2015.05
[25]

Ogunrotimi DG, Kayode J. 2018. Effect of pre-chilling and storage temperature on seed germination of Solanum macrocarpon L. (African Eggplant ). World News of Natural Sciences 20:121−28

[26]

Domin M, Kluza F, Góral D, Nazarewicz S, Kozłowicz K, et al. 2019. Germination energy and capacity of maize seeds following low-temperature short storage. Sustainability 12:46

doi: 10.3390/su12010046
[27]

Kalsa KK. 2012. Influence of seed priming on seed germination and vigor traits of Vicia villosa ssp. dasycarpa (Ten. ). African Journal of Agricultural Reseearch 7:3202−8

doi: 10.5897/ajar11.1489
[28]

Collins AR. 2004. The comet assay for DNA damage and repair: principles, applications, and limitations. Molecular Biotechnology 26:249−61

doi: 10.1385/MB:26:3:249
[29]

R Core Team. 2021. R: A Language and environment for Statistical Computing. R Foundation foundation Statistical Computing, Vienna. https://www.R-project.org/

[30]

Tchokponhoué DA, N’Danikou S, Achigan-Dako EG. 2019. A combination of approaches evidenced seed storage behaviour in the miracle berry Synsepalum dulcificum (Schumach. et Thonn.) Daniell. BMC Plant Biology 19:117

doi: 10.1186/s12870-019-1714-1
[31]

van Treuren R, de Groot EC, van Hintum TJL. 2013. Preservation of seed viability during 25 years of storage under standard genebank conditions. Genetic Resources and Crop Evolution 60:1407−21

doi: 10.1007/s10722-012-9929-0
[32]

Liu Y, Zhang H, Li X, Wang F, Lyle D, et al. 2019. Quantitative trait locus mapping for seed artificial aging traits using an F2:3 population and a recombinant inbred line population crossed from two highly related maize inbreds. Plant Breeding 138:29−37

doi: 10.1111/pbr.12663
[33]

Raj D, Dahiya OS, Yadav AK, Arya RK, Kumar K. 2014. Effect of natural ageing on biochemical changes in relation to seed viability in okra(Abelmoschus esculentus). The Indian Journal of Agricultural Sciences 84:280−86

doi: 10.56093/ijas.v84i2.38051
[34]

Kameswara Rao N, Dulloo ME, Engels JMM. 2017. A review of factors that influence the production of quality seed for long-term conservation in genebanks. Genetic Resources and Crop Evolution 64:1061−74

doi: 10.1007/s10722-016-0425-9
[35]

Hatfield JL, Prueger JH. 2015. Temperature extremes: effect on plant growth and development. Weather and Climate Extremes 10:4−10

doi: 10.1016/j.wace.2015.08.001
[36]

Kochanek J, Steadman KJ, Probert RJ, Adkins SW. 2011. Parental effects modulate seed longevity: exploring parental and offspring phenotypes to elucidate pre-zygotic environmental influences. The New Phytologist 191:223−33

doi: 10.1111/j.1469-8137.2011.03681.x
[37]

Singh B, Singh SK, Matcha SK, Kakani VG, Wijewardana C, et al. 2019. Parental environmental effects on seed quality and germination response to temperature of Andropogon gerardii. Agronomy 9:304

doi: 10.3390/agronomy9060304
[38]

Adetunji AE, Adetunji TL, Varghese B, Sershen, Pammenter NW. 2021. Oxidative stress, ageing and methods of seed invigoration: an overview and perspectives. Agronomy 11:2369

doi: 10.3390/agronomy11122369
[39]

Ellis RH. 2022. Seed ageing, survival and the improved seed viability equation; forty years on. Seed Science and Technology 50:1−20

doi: 10.15258/sst.2022.50.1.s.01
[40]

Tatić M, Balešević-Tubić S, Đorđević V, Nikolić Z, Đukić V, et al. 2012. Soybean seed viability and changes of fatty acids content as affected by seed aging. African Journal of Biotechnology 11:10310−16

doi: 10.5897/ajb11.3505
[41]

Lechowska K, Kubala S, Wojtyla Ł, Nowaczyk G, Quinet M, et al. 2019. New insight on water status in germinating Brassica napus seeds in relation to priming-improved germination. International Journal of Molecular Sciences 20:540

doi: 10.3390/ijms20030540
[42]

Waterworth WM, Footitt S, Bray CM, Finch-Savage WE, West CE. 2016. DNA damage checkpoint kinase ATM regulates germination and maintains genome stability in seeds. Proceedings of the National Academy of Sciences of the United States of America 113:9647−52

doi: 10.1073/pnas.1608829113
[43]

Santos SEM, Gimenes MA, de Oliveir JJ, FCosta M, FCGomes M, et al. 2019. Consequences of accelerated aging for DNA integrity and seed germination of cowpea. Genetics and Molecular Research 18(3):gmr18304

doi: 10.4238/gmr18304
[44]

Vijay D, Dadlani M, Kumar PA, Panguluri SK. 2009. Molecular marker analysis of differentially aged seeds of soybean and safflower. Plant Molecular Biology Reporter 27:282−91

doi: 10.1007/s11105-008-0085-9
[45]

Adetunji AE, Sershen, Varghese B, Pammenter NW. 2020. Effects of inorganic salt solutions on vigour, viability, oxidative metabolism and germination enzymes in aged cabbage and lettuce seeds. Plants 9:1164

doi: 10.3390/plants9091164
[46]

Korkmaz A, Köklü, Yakupoğlu G. 2018. Investigating the effects of melatonin application on the ageing process of pepper seeds. Acta Horticulturae 1204:9−16

doi: 10.17660/actahortic.2018.1204.2
[47]

Nazari R, Parsa S, Tavakkol Afshari R, Mahmoodi S, Seyyedi SM. 2020. Salicylic acid priming before and after accelerated aging process increases seedling vigor in aged soybean seed. Journal of Crop Improvement 34:218−37

doi: 10.1080/15427528.2019.1710734
[48]

Sharma SN, Maheshwari A, Sharma C, Shukla N. 2018. Gene expression patterns regulating the seed metabolism in relation to deterioration/ageing of primed mung bean (Vigna radiata L.) seeds. Plant Physiology and Biochemistry:PPB 124:40−49

doi: 10.1016/j.plaphy.2017.12.036
[49]

Orsi CH, Tanksley SD. 2009. Natural variation in an ABC transporter gene associated with seed size evolution in tomato species. PLoS Genetics 5:e1000347

doi: 10.1371/journal.pgen.1000347
[50]

Lin YX, Xu HJ, Yin GK, Zhou YC, Lu XX, et al. 2022. Dynamic changes in membrane lipid metabolism and antioxidant defense during soybean (Glycine max L. Merr.) seed aging. Frontiers in Plant Science 13:908949

doi: 10.3389/fpls.2022.908949
[51]

Bailly C, El-Maarouf-Bouteau H, Corbineau F. 2008. From intracellular signaling networks to cell death: the dual role of reactive oxygen species in seed physiology. Comptes Rendus Biologies 331:806−14

doi: 10.1016/j.crvi.2008.07.022
[52]

Belete T, Mekbib F, Eshete M. 2017. Assessment of genetic improvement in grain yield potential and related traits of Kabuli type chickpea (Cicer arietinum L.) varieties in Ethiopia (1974−2009). Advances in Crop Science and Technology 5(3):284

doi: 10.4172/2329-8863.1000284
[53]

Han Y, Li D, Zhu D, Li H, Li X, et al. 2012. QTL analysis of soybean seed weight across multi-genetic backgrounds and environments. Theoretical and Applied Genetics 125:671−83

doi: 10.1007/s00122-012-1859-x