[1]

Ahmad A, Rehman MU, Wali AF, El-Serehy HA, Al-Misned FA, et al. 2020. Box–Behnken response surface design of polysaccharide extraction from Rhododendron arboreum and the evaluation of its antioxidant potential. Molecules 25:3835

doi: 10.3390/molecules25173835
[2]

Li W, Wang Y, Wei H, Zhang Y, Guo Z, et al. 2020. Structural characterization of Lanzhou lily (Lilium davidii var. unicolor) polysaccharides and determination of their associated antioxidant activity. Journal of the Science of Food and Agriculture 100:5603−16

doi: 10.1002/jsfa.10613
[3]

Zhang X, Zhang Q, Xue H, Zhang J, Wang X. 2022. A green and highly efficient method of extracting polyphenols from Lilium davidii var. unicolor Salisb using deep eutectic solvents. Chemical Engineering Communications 209:271−80

doi: 10.1080/00986445.2020.1864625
[4]

Huang D, Li W, Dawuda MM, Huo J, Li C, et al. 2021. Hydrogen sulfide reduced colour change in Lanzhou lily-bulb scales. Postharvest Biology and Technology 176:111520

doi: 10.1016/j.postharvbio.2021.111520
[5]

Xie M, Tan H, Zhao G. 2022. A clean and sustainable strategy to produce bio-lubricant with high-bearing and good anti-oxidation ability from Lanzhou lily. Journal of Cleaner Production 371:133333

doi: 10.1016/j.jclepro.2022.133333
[6]

de Klerk GJ. 2012. Micropropagation of bulbous crops: technology and present state. Floriculture and Ornamental Biotechnology 6:1−8

[7]

Lazare S, Bechar D, Fernie AR, Brotman Y, Zaccai M. 2019. The proof is in the bulb: glycerol influences key stages of lily development. The Plant Journal 97:321−40

doi: 10.1111/tpj.14122
[8]

MukerjeaR, Yu L, Robyt JF. 2002. Starch biosynthesis: mechanism for the elongation of starch chains. Carbohydrate Research 337:1015−22

doi: 10.1016/S0008-6215(02)00067-8
[9]

Islam MS, Roni MZK, Shimasaki K. 2017. Factors affecting bulblet growth of Lilium sp. in vitro and in vivo. Plant Omics Journal 10:263−68

doi: 10.21475/poj.10.05.17.pne872
[10]

Yang P, Xu L, Xu H, Tang Y, He G, et al. 2017. Histological and transcriptomic analysis during bulbil formation in Lilium lancifolium. Frontiers in Plant Science 8:1508

doi: 10.3389/fpls.2017.01508
[11]

Fang S, Yang C, Ali MM, Lin M, Tian S, et al. 2022. Transcriptome analysis reveals the molecular regularity mechanism underlying stem bulblet formation in Oriental lily 'Siberia'; functional characterization of the LoLOB18 gene. International Journal of Molecular Sciences 23:15246

doi: 10.3390/ijms232315246
[12]

Li X, Wang C, Cheng J, Zhang J, da Silva JAT, et al. 2014. Transcriptome analysis of carbohydrate metabolism during bulblet formation and development in Lilium davidii var. unicolor. BMC Plant Biology 14:358

doi: 10.1186/s12870-014-0358-4
[13]

Hegde PS, White IR and Debouck C. 2003. Interplay of transcriptomics and proteomics. Current Opinion in Biotechnology 14:647−51

doi: 10.1016/j.copbio.2003.10.006
[14]

Diz AP, Martínez-Fernández M and Rolán-Alvarez E. 2012. Proteomics in evolutionary ecology: linking the genotype with the phenotype. Molecular Ecology 21:1060−80

doi: 10.1111/j.1365-294X.2011.05426.x
[15]

Ali B, Gill RA, Yang S, Gill MB, Farooq MA, et al. 2015. Regulation of cadmium-induced proteomic and metabolic changes by 5-aminolevulinic acid in leaves of Brassica napus L. PLoS One 10:e0123328

doi: 10.1371/journal.pone.0123328
[16]

Dai H, Wei S, Noori A. 2020. The mechanism of chelator improved the tolerance and accumulation of poplar to Cd explored through differential expression protein based on iTRAQ. Journal of Hazardous Materials 393:122370

doi: 10.1016/j.jhazmat.2020.122370
[17]

Ma Q, Shi C, Su C, Liu Y. 2020. Complementary analyses of the transcriptome and iTRAQ proteome revealed mechanism of ethylene dependent salt response in bread wheat (Triticum aestivum L.). Food Chemistry 325:126866

doi: 10.1016/j.foodchem.2020.126866
[18]

Wu Y, Pi J, Zhang H, Xiao H, Pan A, et al. 2020. Integrating the transcriptome and proteome to identify important functional genes for laying hens with hard- or weak-shelled eggs. Research Square

doi: 10.21203/rs.3.rs-124584/v1
[19]

Clough SJ, Bent AF. 1998. Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. The Plant Journal 16:735−43

doi: 10.1046/j.1365-313x.1998.00343.x
[20]

Kanehisa M, Araki M, Goto S, Hattori M, Hirakawa M, et al. 2008. KEGG for linking genomes to life and the environment. Nucleic Acids Research 36:D480−D484

doi: 10.1093/nar/gkm882
[21]

Wang X, Chang L, Tong Z, Wang D, Yin Q, et al. 2016. Proteomics profiling reveals carbohydrate metabolic enzymes and 14-3-3 proteins play important roles for starch accumulation during Cassava root tuberization. Scientific Reports 6:19643

doi: 10.1038/srep19643
[22]

Agrawal L, Chakraborty S, Jaiswal DK, Gupta S, Datta A, et al. 2008. Comparative proteomics of tuber induction, development and maturation reveal the complexity of tuberization process in potato (Solanum tuberosum L.). Journal of Proteome Research 7:3803−17

doi: 10.1021/pr8000755
[23]

Chen S, Chen J, Hou F, Feng Y, Zhang R. 2018. iTRAQ-based quantitative proteomic analysis reveals the lateral meristem developmental mechanism for branched spike development in tetraploid wheat (Triticum turgidum L.). BMC Genomics 19:228

doi: 10.1186/s12864-018-4607-z
[24]

Cai Z, Cai Z, Huang J, Wang A, Ntambiyukuri A, et al. 2022. Transcriptomic analysis of tuberous root in two sweet potato varieties reveals the important genes and regulatory pathways in tuberous root development. BMC Genomics 23:473

doi: 10.1186/s12864-022-08670-x
[25]

Sun Q, Zhang B, Yang C, Wang W, Xiang L, et al. 2022. Jasmonic acid biosynthetic genes TgLOX4 and TgLOX5 are involved in daughter bulb development in tulip (Tulipa gesneriana). Horticulture Research 9:uhac006

doi: 10.1093/hr/uhac006
[26]

Li W, Huang D, Wang B, Hou X, Zhang R, et al. 2022. Changes of starch and sucrose content and related gene expression during the growth and development of Lanzhou lily bulb. PLoS One 17:e0262506

doi: 10.1371/journal.pone.0262506
[27]

Mo J, Qu Y, He G, Yang P, Wang L, et al. 2023. Effect of exogenous 6-BA induced Lilium lancifolium bulblets formation in aerial cultivation. Scientia Horticulturae 309:111644

doi: 10.1016/j.scienta.2022.111644
[28]

He G, Cao Y, Wang J, Song M, Bi M, et al. 2022. WUSCHEL-related homeobox genes cooperate with cytokinin to promote bulbil formation in Lilium lancifolium. Plant Physiology 190:387−402

doi: 10.1093/plphys/kiac259
[29]

Nahirñak V, Almasia NI, Fernandez PV, Hopp HE, Estevez JM, et al. 2012. Potato Snakin-1 gene silencing affects cell division, primary metabolism, and cell wall composition. Plant Physiology 158:252−63

doi: 10.1104/pp.111.186544
[30]

Ben-issan G, Lee JY, Borohov A, Weiss D. 2004. GIP, a Petunia hybrida GA-duced cysteine-rich protein: a possible role in shoot elongation and transition to flowering. The Plant Journal 37:229−38

doi: 10.1046/j.1365-313X.2003.01950.x
[31]

Qu J, Kang SG, Hah C, Jang JC. 2016. Molecular and cellular characterization of GA-stimulated transcripts GASA4 and GASA6 in Arabidopsis thaliana. Plant Science 246:1−10

doi: 10.1016/j.plantsci.2016.01.009
[32]

Roxrud I, Lid SE, Fletcher JC, Schmidt EDL, Opsahl-Sorteberg HG. 2007. GASA4, One of the 14-member Arabidopsis GASA family of small polypeptides, regulates flowering and seed development. Plant and Cell Physiology 48:471−83

doi: 10.1093/pcp/pcm016
[33]

Zimmermann R, Sakai H, Hochholdinger F. 2010. The Gibberellic Acid Stimulated - Like gene family in maize and its role in lateral root development. Plant Physiology 152:356−65

doi: 10.1104/pp.109.149054
[34]

Moyano-Cañete E, Bellido ML, García-Caparrós N, Medina-Puche L, Amil-Ruiz F, et al. 2013. FaGAST2, a strawberry ripening-related gene, acts together with FaGAST1 to determine cell size of the fruit receptacle. Plant and Cell Physiology 54:218−63

doi: 10.1093/pcp/pcs167
[35]

Alonso-Ramírez A, Rodríguez D, Reyes D, Jiménez JA, Nicolás G, et al. 2009. Evidence for a role of gibberellins in dalicylic acid-modulated early plant responses to abiotic stress in Arabidopsis seeds. Plant Physiology 150:1335−44

doi: 10.1104/pp.109.139352
[36]

Ko CB, Woo YM, Lee DJ, Lee MC , Kim CS. 2007. Enhanced tolerance to heat stress in transgenic plants expressing the GASA4 gene. Plant Physiology and Biochemistry 45:722−28

doi: 10.1016/j.plaphy.2007.07.010
[37]

Sun S, Wang H, Yu H, Zhong C, Zhang X, et al. 2013. GASA14 regulates leaf expansion and abiotic stress resistance by modulating reactive oxygen species accumulation. Journal of Experimental Botany 64:1637−47

doi: 10.1093/jxb/ert021
[38]

Zhang S, Wang X. 2008. Expression pattern of GASA, downstream genes of DELLA, in Arabidopsis. Chinese Science Bulletin 53:3839−46

doi: 10.1007/s11434-008-0525-9
[39]

Wang L, Wang Z, Xu Y, Joo SH, Kim SK, et al. 2009. OsGSR1 is involved in crosstalk between gibberellins and brassinosteroids in rice. The Plant Journal 57:498−10

doi: 10.1111/j.1365-313X.2008.03707.x
[40]

Wang H, Wei T, Wang X, Zhang L, Yang M, et al. 2018. Transcriptome analyses from mutant Salvia miltiorrhiza reveals important roles for SmGASA4 during plant development. International Journal of Molecular Sciences 19:2088

doi: 10.3390/ijms19072088
[41]

Li Z, Gao J, Wang G, Wang S, Chen K, et al. 2021. Genome-wide identification and characterization of GASA gene family in Nicotiana tabacum. Frontiers in Genetics 12:768942

doi: 10.3389/fgene.2021.768942