[1]

Muñoz-Mérida A, González-Plaza JJ, Cañada A, Blanco AM, del Carmen García-López M, et al. 2013. De novo assembly and functional annotation of the olive (Olea europaea) transcriptome. DNA Research 20:93−108

doi: 10.1093/dnares/dss036
[2]

Serrano-García I, Olmo-García L, Polo-Megías D, Serrano A, León L, et al. 2022. Fruit phenolic and triterpenic composition of progenies of Olea europaea subsp. cuspidata, an interesting phytochemical source to be included in olive breeding programs. Plants 11:1791

doi: 10.3390/plants11141791
[3]

Darvishzadeh P, Orsat V. 2022. Microwave-assisted extraction of antioxidant compounds from Russian olive leaves and flowers: Optimization, HPLC characterization and comparison with other methods. Journal of Applied Research on Medicinal and Aromatic Plants 27:100368

doi: 10.1016/j.jarmap.2021.100368
[4]

Gao XH, Zhang L, Wei H, Chen HD. 2008. Efficacy and safety of innovative cosmeceuticals. Clinics in Dermatology 26:367−74

doi: 10.1016/j.clindermatol.2008.01.013
[5]

Şahin S, Bilgin M. 2018. Olive tree (Olea europaea L.) leaf as a waste by-product of table olive and olive oil industry: a review. Journal of the Science of Food and Agriculture 98:1271−79

doi: 10.1002/jsfa.8619
[6]

Bensehaila S, Ilias F, Saadi F, Zaouadi N. 2022. Phenolic compounds and antimicrobial activity of olive (Olea europaea L.) leaves. Asian Journal of Dairy and Food Research 41:237−41

doi: 10.18805/ajdfr.dr-240
[7]

Sabry OMM. 2014. Review: beneficial health effects of olive leaves extracts. Journal of Natural Sciences Research 4:1−9 www.iiste.org/Journals/index.php/JNSR/article/view/15864

[8]

Jensen SR, Franzyk H, Wallander E. 2002. Chemotaxonomy of the Oleaceae: iridoids as taxonomic markers. Phytochemistry 60:213−31

doi: 10.1016/s0031-9422(02)00102-4
[9]

Soler-Rivas C, Espín J, Wichers H. 2000. Oleuropein and related compounds. Journal of the Science of Food and Agriculture 80:1013−23

doi: 10.1002/(SICI)1097-0010(20000515)80:7<1013::AID-JSFA571>3.0.CO;2-C
[10]

Romero-García JM, Niño L, Martínez-Patiño C, Álvarez C, Castro E, et al. 2014. Biorefinery based on olive biomass. State of the art and future trends. Bioresource Technology 159:421−32

doi: 10.1016/j.biortech.2014.03.062
[11]

Famiani F, Farinelli D, Gardi T, Rosati A. 2019. The cost of flowering in olive (Olea europaea L.). Scientia Horticulturae 252:268−73

doi: 10.1016/j.scienta.2019.03.008
[12]

Levin AG, Lavee S. 2005. The influence of girdling on flower type, number, inflorescence density, fruit set, and yields in three different olive cultivars (Barnea, Picual, and Souri). Australian Journal of Agricultural Research 56:827−31

doi: 10.1071/ar04094
[13]

Contreras MDM, Lama-Muñoz A, Espínola F, Moya M, Romero I, et al. 2020. Valorization of olive mill leaves through ultrasound-assisted extraction. Food Chemistry 314:126218

doi: 10.1016/j.foodchem.2020.126218
[14]

Acar-Tek N, Ağagündüz D. 2020. Olive leaf (Olea europaea L. folium): potential effects on glycemia and lipidemia. Annals of Nutrition and Metabolism 76:10−15

doi: 10.1159/000505508
[15]

Api AM, Belsito D, Botelho D, Bruze M, Burton GA Jr, et al. 2022. Update to RIFM fragrance ingredient safety assessment, methyl dihydrojasmonate, CAS Registry Number 24851-98-7. Food and Chemical Toxicology 163:113040

doi: 10.1016/j.fct.2022.113040
[16]

Yehia R, Hathout RM, Attia DA, Elmazar MM, Mortada ND. 2017. Anti-tumor efficacy of an integrated methyl dihydrojasmonate transdermal microemulsion system targeting breast cancer cells: in vitro and in vivo studies. Colloids and Surfaces B: Biointerfaces 155:512−21

doi: 10.1016/j.colsurfb.2017.04.031
[17]

Issa MY, Mohsen E, Younis IY, Nofal ES, Farag MA. 2020. Volatiles distribution in jasmine flowers taxa grown in Egypt and its commercial products as analyzed via solid-phase microextraction (SPME) coupled to chemometrics. Industrial Crops and Products 144:112002

doi: 10.1016/j.indcrop.2019.112002
[18]

Liu Y, Wang Z, Cui Z, Qi Q, Hou J. 2022. Progress and perspectives for microbial production of farnesene. Bioresource Technology 347:126682

doi: 10.1016/j.biortech.2022.126682
[19]

Lindo-García V, Giné-Bordonaba J, Vall-Llaura N, Duaigües E, Larrigaudière C. 2021. Unravelling the cold-induced regulation of ethylene and α-farnesene and its involvement with the development of scald-like disorders in different pear cultivars. Postharvest Biology and Technology 174:111441

doi: 10.1016/j.postharvbio.2020.111441
[20]

Zheng S, Huang K, Tong T. 2021. Efficacy and mechanisms of oleuropein in mitigating diabetes and diabetes complications. Journal of Agricultural and Food Chemistry 69:6145−55

doi: 10.1021/acs.jafc.1c01404
[21]

Sun W, Wang X, Hou C, Yang L, Li H, et al. 2017. Oleuropein improves mitochondrial function to attenuate oxidative stress by activating the Nrf2 pathway in the hypothalamic paraventricular nucleus of spontaneously hypertensive rats. Neuropharmacology 113:556−66

doi: 10.1016/j.neuropharm.2016.11.010
[22]

Ryan D, Antolovich M, Prenzler P, Robards K, Lavee S. 2002. Biotransformations of phenolic compounds in Olea europaea L. Scientia Horticulturae 92:147−76

doi: 10.1016/s0304-4238(01)00287-4
[23]

Chen C, Ai QD, Wei YH. 2021. Potential role of hydroxytyrosol in neuroprotection. Journal of Functional Foods 82:104506

doi: 10.1016/j.jff.2021.104506
[24]

Olajide TM, Liu T, Liu H, Weng X. 2020. Antioxidant properties of two novel lipophilic derivatives of hydroxytyrosol. Food Chemistry 315:126197

doi: 10.1016/j.foodchem.2020.126197
[25]

Shahidi F, Hossain A. 2022. Role of lipids in food flavor generation. Molecules 27:5014

doi: 10.3390/molecules27155014
[26]

Essafi Rhouma H, Trabelsi N, Chimento A, Benincasa C, Tamaalli A, et al. 2021. Olea europaea L. Flowers as a new promising anticancer natural product: phenolic composition, antiproliferative activity and apoptosis induction. Natural Product Research 35:1836−39

doi: 10.1080/14786419.2019.1637867
[27]

Abaza L, Taamalli A, Arráez-Román D, Segura-Carretero A, Fernández-Gutierrérez A, et al. 2017. Changes in phenolic composition in olive tree parts according to development stage. Food Research International 100:454−61

doi: 10.1016/j.foodres.2016.12.002
[28]

Liu X, Guo L, Zhang J, Xue L, Luo Y, et al. 2021. Integrated analysis of fatty acid metabolism and transcriptome involved in olive fruit development to improve oil composition. Forests 12:1773

doi: 10.3390/f12121773
[29]

Yin Q, Han X, Han Z, Chen Q, Shi Y, et al. 2020. Genome-wide analyses reveals a glucosyltransferase involved in rutin and emodin glucoside biosynthesis in Tartary buckwheat. Food Chemistry 318:126478

doi: 10.1016/j.foodchem.2020.126478
[30]

Aoki C, Ma X, Higashi K, Ishizuka Y, Ueda K, et al. 2021. Stabilization mechanism of amorphous carbamazepine by transglycosylated rutin, a non-polymeric amorphous additive with a high glass transition temperature. International Journal of Pharmaceutics 600:120491

doi: 10.1016/j.ijpharm.2021.120491
[31]

Zhou F, Yang L, Gu Y, Ge Z, Huang Y, et al. 2022. Characterization and quantification of two acylated flavonol glycosides from Camellia sinensis and their antibacterial effect on oral pathogens. Beverage Plant Research 2:1

doi: 10.48130/bpr-2022-0001
[32]

García-González DL, Aparicio-Ruiz R, Aparicio R. 2008. Virgin olive oil - Chemical implications on quality and health. European Journal of Lipid Science and Technology 110:602−7

doi: 10.1002/ejlt.200700262
[33]

Ben Hmida R, Gargouri B, Chtourou F, Sevim D, Bouaziz M. 2022. Fatty acid and triacyglycerid as markers of virgin olive oil from Mediterranean region: traceability and chemometric authentication. European Food Research and Technology 248:1749−64

doi: 10.1007/s00217-022-04002-1