[1] |
Ravichanthiran K, Ma ZF, Zhang H, Cao Y, Wang CW, et al. 2018. Phytochemical profile of brown rice and its nutrigenomic implications. Antioxidant 7:71 doi: 10.3390/antiox7060071 |
[2] |
Kato T, Horibata A. 2021. Distribution of γ-oryzanol in the outer layers of brown rice and its variation among cultivars. Plant Production Science 24:256−65 doi: 10.1080/1343943x.2020.1816139 |
[3] |
Butsat S, Siriamornpun S. 2010. Antioxidant capacities and phenolic compounds of the husk bran and endosperm of Thai rice. Food Chemistry 119:606−13 doi: 10.1016/j.foodchem.2009.07.001 |
[4] |
Heiniö RL, Noort MWJ, Katina K, Alam SA, Sozer N, et al. 2016. Sensory characteristics of wholegrain and bran-rich cereal foods - A review. Trends in Food Science & Technology 47:25−38 doi: 10.1016/j.jpgs.2015.11.002 |
[5] |
Diez-Gutiérrez L, San Vicente L, Barrón LJR, Villarán MDC, Chávarri M. 2020. Gamma-aminobutyric acid and probiotics: Multiple health benefits and their future in the global functional food and nutraceuticals market. Journal of Functional Foods 64:103669 doi: 10.1016/j.jff.2019.103669 |
[6] |
Diana M, Quílez J, Rafecas M. 2014. Gamma-aminobutyric acid as a bioactive compound in foods: a review. Journal of Functional Foods 10:407−20 doi: 10.1016/j.jff.2014.07.004 |
[7] |
Xu N, Wei L, Liu J. 2017. Biotechnological advances and perspectives of γ-aminobutyric acid production. World Journal of Microbiology & Biotechnology 33:64 doi: 10.1007/s11274-017-2234-5 |
[8] |
Yang G, Xu J, Xu Y, Guan X, Ramaswamy HS, et al. 2023. Recent developments in applications of physical fields for microbial decontamination and enhancing nutritional properties of germinated edible seeds and sprouts: a review. Critical Reviews in Food Science and Nutritio Latest Article doi: 10.1080/10408398.2023.2255671 |
[9] |
Cakmak T, Dumlupinar R, Erdal S. 2010. Acceleration of germination and early growth of wheat and bean seedlings grown under various magnetic field and osmotic conditions. Bioelectromagnetics 31:120−29 doi: 10.1002/bem.20537 |
[10] |
Luo X, Li D, Tao Y, Wang P, Yang R, et al. 2022. Effect of static magnetic field treatment on the germination of brown rice: Changes in α-amylase activity and structural and functional properties in starch. Food Chemistry 383:132392 doi: 10.1016/j.foodchem.2022.132392 |
[11] |
Chen C, Tao Y, Han Y, Ding Y, Jian X, et al. 2023. Preparation of germinated brown rice with high γ-aminobutyric acid content and short root by magnetic field treatment. Journal of Cereal Science 112:103720 doi: 10.1016/j.jcs.2023.103720 |
[12] |
Ureta-Leones D, García-Quintana Y, Vega-Rosete S, Pérez-Morell L, Bravo-Medina CA, et al. 2021. Effect of pre-germination treatment with direct magnetic field exposure: a systematic review and meta-analysis. European Journal of Forest Research 140:1029−38 doi: 10.1007/s10342-021-01400-0 |
[13] |
Chaiyasut C, Sivamaruthi BS, Pengkumsri N, Saelee M, Kesika P, et al. 2017. Optimization of conditions to achieve high content of gamma amino butyric acid in germinated black rice and changes in bioactivities. Food Science and Technology 37:83−93 doi: 10.1590/1678-457x.33416 |
[14] |
Miller G, Suzuki N, Ciftci-Yilmaz S, Mittler R. 2010. Reactive oxygen species homeostasis and signalling during drought and salinity stresses. Plant Cell & Environment 33:453−67 doi: 10.1111/j.1365-3040.2009.02041.x |
[15] |
Choe H, Sung J, Lee J, Kim Y. 2021. Effects of calcium chloride treatment on bioactive compound accumulation and antioxidant capacity in germinated brown rice. Journal of Cereal Science 101:103294 doi: 10.1016/j.jcs.2021.103294 |
[16] |
Yin Y, Yang R, Guo Q, Gu Z. 2014. NaCl stress and supplemental CaCl2 regulating GABA metabolism pathways in germinating soybean. European Food Research and Technology 238:781−88 doi: 10.1007/s00217-014-2156-5 |
[17] |
Li W, Rao S, Du C, Liu L, Dai G, et al. 2022. Strategies used by two goji species, Lycium ruthenicum and Lycium barbarum, to defend against salt stress. Scientia Horticulturae 306:111430 doi: 10.1016/j.scienta.2022.111430 |
[18] |
Thomas S, Anand A, Chinnusamy V, Dahuja A, Basu S. 2013. Magnetopriming circumvents the effect of salinity stress on germination in chickpea seeds. Acta Physiologiae Plantarum 35:3401−11 doi: 10.1007/s11738-013-1375-x |
[19] |
Samarah NH, Bany Hani MMY, Makhadmeh IM. 2021. Effect of magnetic treatment of water or seeds on germination and productivity of tomato plants under salinity stress. Horticulturae 7:220 doi: 10.3390/horticulturae7080220 |
[20] |
Zhang Q, Xiang J, Zhang L, Zhu X, Evers J, et al. 2014. Optimizing soaking and germination conditions to improve gamma-aminobutyric acid content in japonica and indica germinated brown rice. Journal of Functional Foods 10:283−91 doi: 10.1016/j.jff.2014.06.009 |
[21] |
Knutson CA. 1986. A simplified colorimetric procedure for determination of amylose of amylose in maize starches. Cereal Chemistry 63(2):89−92 |
[22] |
Whiffen LK, Midgley DJ, McGee PA. 2007. Polyphenolic compounds interfere with quantification of protein in soil extracts using the Bradford method. Soil Biology & Biochemistry 39:691−94 doi: 10.1016/j.soilbio.2006.08.012 |
[23] |
Yue F, Zhang J, Xu J, Niu T, Lu X, et al. 2022. Effects of monosaccharide composition on quantitative analysis of total sugar content by phenol-sulfuric acid method. Frontiers in Nutrition 9:963318 doi: 10.3389/fnut.2022.963318 |
[24] |
Yu K, Hu S, Huang J, Mei LH. 2011. A high-throughput colorimetric assay to measure the activity of glutamate decarboxylase. Enzyme and Microbial Technology 49:272−76 doi: 10.1016/j.enzmictec.2011.06.007 |
[25] |
Ma Y, Wang P, Chen Z, Gu Z, Yang R. 2019. NaCl stress on physio-biochemical metabolism and antioxidant capacity in germinated hulless barley (Hordeum vulgare L.). Journal of the Science of Food and Agriculture 99:1755−64 doi: 10.1002/jsfa.9365 |
[26] |
Munarko H, Sitanggang AB, Kusnandar F, Budijanto S. 2022. Germination of five Indonesian brown rice: evaluation of antioxidant, bioactive compounds, fatty acids and pasting properties. Food Science and Technology 42:e19721 doi: 10.1590/fst.19721 |
[27] |
Liu LL, Zhai HQ, Wan JM. 2005. Accumulation of γ-aminobutyric acid in giant-embryo rice grain in relation to glutamate decarboxylase activity and its gene expression during water soaking. Cereal Chemistry 82:191−96 doi: 10.1094/cc-82-0191 |
[28] |
Akita S, Yoon BS, Kabaki N. 1998. Relationship between seedling emergence rate and embryo weight of rice under low-temperature and submerged soil condition. Japanese Journal of Crop Science 67:318−22 doi: 10.1626/jcs.67.318 |
[29] |
Yao S. 2008. Screening and application of germinated brown rice varieties with high γ-aminobutyric acid content. Thesis. Huazhong Agricultural University, Wuhan, China. |
[30] |
Kim K, Yoon H. 2023. Gamma-aminobutyric acid signaling in damage response, metabolism, and disease. International Journal of Molecular Sciences 24:4584 doi: 10.3390/ijms24054584 |
[31] |
Zakeri A, Khavari-Nejad RA, Saadatmand S, Kootanaee FN, Abbaszadeh R. 2021. Effects of static magnetic field on growth, some biochemical and antioxidant system in lemon balm (Melissa officinalis L.). Acta Scientiarum Polonorum-Hortorum Cultus 20:71−80 doi: 10.24326/asphc.2021.1.7 |
[32] |
Jin Y, Guo W, Hu X, Liu M, Xu X, et al. 2019. Static magnetic field regulates Arabidopsis root growth via auxin signaling. Scientific Reports 9:14384 doi: 10.1038/s41598-019-50970-y |
[33] |
Luo X, Tao Y, Han Y, Li D. 2023. Effect of static magnetic field treatment on γ-aminobutyric acid content and sensory characteristics of germinated brown rice cake. Food Chemistry 404:134709 doi: 10.1016/j.foodchem.2022.134709 |
[34] |
Anand A, Nagarajan S, Verma APS, Joshi DK, Pathak PC, et al. 2012. Pre-treatment of seeds with static magnetic field ameliorates soil water stress in seedlings of maize (Zea mays L.). Indian Journal of Biochemistry & Biophysics 49:63−70 |
[35] |
Saletnik B, Saletnik A, Słysz E, Zaguła G, Bajcar M, et al. 2022. The static magnetic field regulates the structure, biochemical activity, and gene expression of plants. Molecules 27:5823 doi: 10.3390/molecules27185823 |
[36] |
Xie C, Sun M, Wang P, Yang R. 2022. Interaction of gamma-aminobutyric acid and Ca2+ on phenolic compounds bioaccumulation in soybean sprouts under NaCl stress. Plants-Basel 11:3503 doi: 10.3390/plants11243503 |
[37] |
Xing SG, Jun YB, Hau ZW, Liang LY. 2007. Higher accumulation of γ-aminobutyric acid induced by salt stress through stimulating the activity of diamine oxidases in Glycine max (L.) Merr. roots. Plant Physiology and Biochemistry 45:560−66 doi: 10.1016/j.plaphy.2007.05.007 |
[38] |
Keshavkant S, Padhan J, Parkhey S, Naithani SC. 2012. Physiological and antioxidant responses of germinating Cicer arietinum seeds to salt stress. Russian Journal of Plant Physiology 59:206−11 doi: 10.1134/s1021443712010116 |
[39] |
Khan MSA, Hamid A, Karim MA. 1997. Effect of sodium chloride on germination and seedling characters of different types of rice (Oryza sativa L.). Journal of Agronomy and Crop Science 179:163−69 doi: 10.1111/j.1439-037x.1997.tb00512.x |
[40] |
Farooq M, Asif S, Jang YH, Park JR, Zhao DD, et al. 2022. Effect of different salts on nutrients uptake, gene expression, antioxidant, and growth pattern of selected rice genotypes. Frontiers in Plant Science 13:895282 doi: 10.3389/fpls.2022.895282 |
[41] |
Bam RK, Kumaga FK, Ofori K, Asiedu EA. 2006. Germination, vigour and dehydrogenase activity of naturally aged rice (Oryza sativa L.) seeds soaked in potassium and phosphorus salts. Asian Journal of Plant Sciences 5:948−55 doi: 10.3923/ajps.2006.948.955 |
[42] |
Kumari S, Nazir F, Jain K, Khan MIR. 2023. GABA and potassium modulates defence systems, assimilation of nitrogen and carbon, and yield traits under salt stress in wheat. Journal of Plant Growth Regulation 42:6721−40 doi: 10.1007/s00344-023-10992-3 |
[43] |
Bauréus Koch CLM, Sommarin M, Persson BRR, Salford LG, Eberhardt JL. 2003. Interaction between weak low frequency magnetic fields and cell membranes. Bioelectromagnetics 24:395−402 doi: 10.1002/bem.10136 |