[1]

Giovannoni JJ. 2004. Genetic regulation of fruit development and ripening. The Plant Cell 16:S170−S180

doi: 10.1105/tpc.019158
[2]

Fait A, Hanhineva K, Beleggia R, Dai N, Rogachev I, et al. 2008. Reconfiguration of the achene and receptacle metabolic networks during strawberry fruit development. Plant Physiology 148:730−50

doi: 10.1104/pp.108.120691
[3]

Etienne A, Génard M, Lobit P, Mbeguié-A-Mbéguié D, Bugaud C. 2013. What controls fleshy fruit acidity? A review of malate and citrate accumulation in fruit cells Journal of Experimental Botany 64:1451−69

doi: 10.1093/jxb/ert035
[4]

Mandl J, Szarka A, Bánhegyi G. 2009. Vitamin C: update on physiology and pharmacology. British Journal of Pharmacology 157:1097−110

doi: 10.1111/j.1476-5381.2009.00282.x
[5]

Schlueter AK, Johnston CS. 2011. Vitamin C: overview and update. Journal of Evidence-Based Complementary & Alternative Medicine 16:49−57

doi: 10.1177/1533210110392951
[6]

Chen AY, Chen YC. 2013. A review of the dietary flavonoid, kaempferol on human health and cancer chemoprevention. Food Chemistry 138:2099−107

doi: 10.1016/j.foodchem.2012.11.139
[7]

Liu H, Ji Y, Liu Y, Tian S, Gao Q, et al. 2020. The sugar transporter system of strawberry: genome-wide identification and expression correlation with fruit soluble sugar-related traits in a Fragaria × ananassa germplasm collection. Horticulture Research 7:132

doi: 10.1038/s41438-020-00359-0
[8]

Chen T, Zhang Z, Li B, Qin G, Tian S. 2021. Molecular basis for optimizing sugar metabolism and transport during fruit development. aBIOTECH 2:330−40

doi: 10.1007/s42994-021-00061-2
[9]

Jia H, Wang Y, Sun M, Li B, Han Y, et al. 2013. Sucrose functions as a signal involved in the regulation of strawberry fruit development and ripening. New Phytologist 198:453−65

doi: 10.1111/nph.12176
[10]

Vallarino JG, Osorio S, Bombarely A, Casañal A, Cruz-Rus E, et al. 2015. Central role of FaGAMYB in the transition of the strawberry receptacle from development to ripening. New Phytologist 208:482−96

doi: 10.1111/nph.13463
[11]

Jia M, Ding N, Zhang Q, Xing S, Wei L, et al. 2017. A FERONIA-like receptor kinase regulates strawberry (Fragaria × ananassa) fruit ripening and quality formation. Frontiers in Plant Science 8:1099

doi: 10.3389/fpls.2017.01099
[12]

Wang S, Song M, Guo J, Huang Y, Zhang F, et al. 2018. The potassium channel FaTPK1 plays a critical role in fruit quality formation in strawberry (Fragaria × ananassa). Plant Biotechnology Journal 16:737−48

doi: 10.1111/pbi.12824
[13]

Huang Y, Xu P, Hou B, Shen Y. 2019. Strawberry tonoplast transporter, FaVPT1, controls phosphate accumulation and fruit quality. Plant, Cell & Environment 42:2715−29

doi: 10.1111/pce.13598
[14]

Yuan H, Pang F, Cai W, Chen X, Zhao M, et al. 2021. Genome-wide analysis of the invertase genes in strawberry (Fragaria × ananassa). Journal of Integrative Agriculture 20:2652−65

doi: 10.1016/S2095-3119(20)63381-0
[15]

Wei L, Mao W, Jia M, Xing S, Ali U, et al. 2018. FaMYB44.2, a transcriptional repressor, negatively regulates sucrose accumulation in strawberry receptacles through interplay with FaMYB10. Journal of Experimental Botany 69:4805−20

doi: 10.1093/jxb/ery249
[16]

Liu H, Lyu W, Tian S, Zou X, Zhang L, et al. 2019. The SWEET family genes in strawberry: identification and expression profiling during fruit development. South African Journal of Botany 125:176−87

doi: 10.1016/j.sajb.2019.07.002
[17]

Liu Y, Zhu L, Yang M, Xie X, Sun P, et al. 2022. R2R3-MYB transcription factor FaMYB5 is involved in citric acid metabolism in strawberry fruits. Journal of Plant Physiology 277:153789

doi: 10.1016/j.jplph.2022.153789
[18]

Yang M, Hou G, Peng Y, Wang L, Liu X, et al. 2023. FaGAPC2/FaPKc2.2 and FaPEPCK reveal differential citric acid metabolism regulation in late development of strawberry fruit. Frontiers in Plant Science 14:1138865

doi: 10.3389/fpls.2023.1138865
[19]

Lachapelle MY, Drouin G. 2011. Inactivation dates of the human and guinea pig vitamin C genes. Genetica 139:199−207

doi: 10.1007/s10709-010-9537-x
[20]

Fenech M, Amorim-Silva V, del Valle AE, Arnaud D, Ruiz-Lopez N, et al. 2021. The role of GDP-L-galactose phosphorylase in the control of ascorbate biosynthesis. Plant Physiology 185:1574−94

doi: 10.1093/plphys/kiab010
[21]

Muñoz P, Castillejo C, Gómez JA, Miranda L, Lesemann S, et al. 2023. QTL analysis for ascorbic acid content in strawberry fruit reveals a complex genetic architecture and association with GDP-L-galactose phosphorylase. Horticulture Research 10:uhad006

doi: 10.1093/hr/uhad006
[22]

Cruz-Rus E, Amaya I, Sánchez-Sevilla JF, Botella MA, Valpuesta V. 2011. Regulation of L-ascorbic acid content in strawberry fruits. Journal of Experimental Botany 62:4191−201

doi: 10.1093/jxb/err122
[23]

Wei L, Liu H, Ni Y, Dong J, Zhong C, et al. 2022. FaAKR23 modulates ascorbic acid and anthocyanin accumulation in strawberry (Fragaria × ananassa) fruits. Antioxidants 11:1828

doi: 10.3390/antiox11091828
[24]

Green MA, Fry SC. 2005. Vitamin C degradation in plant cells via enzymatic hydrolysis of 4-O-oxalyl-L-threonate. Nature 433:83−87

doi: 10.1038/nature03172
[25]

Wang R, Shu P, Zhang C, Zhang J, Chen Y, et al. 2022. Integrative analyses of metabolome and genome-wide transcriptome reveal the regulatory network governing flavor formation in kiwifruit (Actinidia chinensis). New Phytologist 233:373−89

doi: 10.1111/nph.17618
[26]

Shu P, Zhang Z, Wu Y, Chen Y, Li K, et al. 2023. A comprehensive metabolic map reveals major quality regulations in red-flesh kiwifruit (Actinidia chinensis). New Phytologist 238:2064−79

doi: 10.1111/nph.18840
[27]

Chen W, Gong L, Guo Z, Wang W, Zhang H, et al. 2013. A novel integrated method for large-scale detection, identification, and quantification of widely targeted metabolites: application in the study of rice metabolomics. Molecular Plant 6:1769−80

doi: 10.1093/mp/sst080
[28]

Luan A, Zhang W, Yang M, Zhong Z, Wu J, et al. 2023. Unveiling the molecular mechanism involving anthocyanins in pineapple peel discoloration during fruit maturation. Food Chemistry 412:135482

doi: 10.1016/j.foodchem.2023.135482
[29]

Kim D, Paggi JM, Park C, Bennett C, Salzberg SL. 2019. Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype. Nature Biotechnology 37:907−15

doi: 10.1038/s41587-019-0201-4
[30]

Love MI, Huber W, Anders S. 2014. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biology 15:550

doi: 10.1186/s13059-014-0550-8
[31]

Mao X, Cai T, Olyarchuk JG, Wei L. 2005. Automated genome annotation and pathway identification using the KEGG Orthology (KO) as a controlled vocabulary. Bioinformatics 21:3787−93

doi: 10.1093/bioinformatics/bti430
[32]

Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, et al. 2000. Gene Ontology: tool for the unification of biology. Nature Genetics 25:25−29

doi: 10.1038/75556
[33]

Zheng B, Zhao L, Jiang X, Cherono S, Liu J, et al. 2021. Assessment of organic acid accumulation and its related genes in peach. Food Chemistry 334:127567

doi: 10.1016/j.foodchem.2020.127567
[34]

Davey MW, Gilot C, Persiau G, Østergaard J, Han Y, et al. 1999. Ascorbate biosynthesis in Arabidopsis cell suspension culture. Plant Physiology 121:535−44

doi: 10.1104/pp.121.2.535
[35]

Langfelder P, Horvath S. 2008. WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics 9:559

doi: 10.1186/1471-2105-9-559
[36]

Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, et al. 2003. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Research 13:2498−504

doi: 10.1101/gr.1239303
[37]

Schwieterman ML, Colquhoun TA, Jaworski EA, Bartoshuk LM, Gilbert JL, et al. 2014. Strawberry flavor: diverse chemical compositions, a seasonal influence, and effects on sensory perception. PLoS ONE 9:e88446

doi: 10.1371/journal.pone.0088446
[38]

Rashid A, Ruan H, Wang Y. 2021. The gene FvTST1 from strawberry modulates endogenous sugars enhancing plant growth and fruit ripening. Frontiers in Plant Science 12:774582

doi: 10.3389/fpls.2021.774582
[39]

Martín-Pizarro C, Vallarino JG, Osorio S, Meco V, Urrutia M, et al. 2021. The NAC transcription factor FaRIF controls fruit ripening in strawberry. The Plant Cell 33:1574−93

doi: 10.1093/plcell/koab070
[40]

Li X, Martín-Pizarro C, Zhou L, Hou B, Wang Y, et al. 2023. Deciphering the regulatory network of the NAC transcription factor FvRIF, a key regulator of strawberry (Fragaria vesca) fruit ripening. The Plant Cell 35:4020−45

doi: 10.1093/plcell/koad210
[41]

Xing S, Chen K, Zhu H, Zhang R, Zhang H, et al. 2020. Fine-tuning sugar content in strawberry. Genome Biology 21:230

doi: 10.1186/s13059-020-02146-5
[42]

Wang J, Wang Y, Zhang J, Ren Y, Li M, et al. 2021. The NAC transcription factor ClNAC68 positively regulates sugar content and seed development in watermelon by repressing ClINV and ClGH3.6. Horticulture Research 8:214

doi: 10.1038/s41438-021-00649-1
[43]

Wei W, Cheng M, Ba L, Zeng R, Luo D, et al. 2019. Pitaya HpWRKY3 is associated with fruit sugar accumulation by transcriptionally modulating sucrose metabolic genes HpINV2 and HpSuSy1. International Journal of Molecular Sciences 20:1890

doi: 10.3390/ijms20081890
[44]

Yu J, Gu K, Zhang L, Sun C, Zhang Q, et al. 2022. MdbHLH3 modulates apple soluble sugar content by activating phosphofructokinase gene expression. Journal of Integrative Plant Biology 64:884−900

doi: 10.1111/jipb.13236
[45]

Li S, Yin X, Wang W, Liu X, Zhang B, et al. 2017. Citrus CitNAC62 cooperates with CitWRKY1 to participate in citric acid degradation via up-regulation of CitAco3. Journal of Experimental Botany 68:3419−26

doi: 10.1093/jxb/erx187
[46]

Liu S, Liu X, Gou B, Wang D, Liu C, et al. 2022. The interaction between CitMYB52 and CitbHLH2 negatively regulates citrate accumulation by activating CitALMT in citrus fruit. Frontiers in Plant Science 13:848869

doi: 10.3389/fpls.2022.848869
[47]

Li S, Yin X, Xie X, Allan AC, Ge H, et al. 2016. The Citrus transcription factor, CitERF13, regulates citric acid accumulation via a protein-protein interaction with the vacuolar proton pump, CitVHA-c4. Scientific Reports 6:20151

doi: 10.1038/srep20151
[48]

Hu D, Sun C, Ma Q, You C, Cheng L, et al. 2016. MdMYB1 regulates anthocyanin and malate accumulation by directly facilitating their transport into vacuoles in apples. Plant Physiology 170:1315−30

doi: 10.1104/pp.15.01333
[49]

Hu D, Li Y, Zhang Q, Li M, Sun C, et al. 2017. The R2R3-MYB transcription factor MdMYB73 is involved in malate accumulation and vacuolar acidification in apple. The Plant Journal 91:443−54

doi: 10.1111/tpj.13579
[50]

Jia D, Wu P, Shen F, Li W, Zheng X, et al. 2021. Genetic variation in the promoter of an R2R3−MYB transcription factor determines fruit malate content in apple (Malus domestica Borkh.). Plant Physiology 186:549−68

doi: 10.1093/plphys/kiab098
[51]

Peng Y, Yuan Y, Chang W, Zheng L, Ma W, et al. 2023. Transcriptional repression of MdMa1 by MdMYB21 in Ma locus decreases malic acid content in apple fruit. The Plant Journal 115:1231−42

doi: 10.1111/tpj.16314
[52]

Hamada A, Tanaka Y, Ishikawa T, Maruta T. 2023. Chloroplast dehydroascorbate reductase and glutathione cooperatively determine the capacity for ascorbate accumulation under photooxidative stress conditions. The Plant Journal 114:68−82

doi: 10.1111/tpj.16117
[53]

Agius F, González-Lamothe R, Caballero JL, Muñoz-Blanco J, Botella MA, et al. 2003. Engineering increased vitamin C levels in plants by overexpression of a D-galacturonic acid reductase. Nature Biotechnology 21:177−81

doi: 10.1038/nbt777
[54]

Zheng X, Gong M, Zhang Q, Tan H, Li L, et al. 2022. Metabolism and regulation of ascorbic acid in fruits. Plants 11:1602

doi: 10.3390/plants11121602
[55]

Lu D, Wu Y, Pan Q, Zhang Y, Qi Y, et al. 2022. Identification of key genes controlling L-ascorbic acid during Jujube (Ziziphus jujuba Mill.) fruit development by integrating transcriptome and metabolome analysis. Frontiers in Plant Science 13:950103

doi: 10.3389/fpls.2022.950103
[56]

Xu X, Zhang Q, Gao X, Wu G, Wu M, et al. 2022. Auxin and abscisic acid antagonistically regulate ascorbic acid production via the SlMAPK8–SlARF4–SlMYB11 module in tomato. The Plant Cell 24:4409−27

doi: 10.1093/plcell/koac262