[1]

Stone JK, Bacon CW, White JF Jr. 2000. An overview of endophytic microbes: endophytism defined. In Microbial Endophytes, eds. Bacon CW, White JF. New York: Marcel Dekker. pp. 3−29. https://doi.org/10.1201/9781482277302-1

[2]

Mei C, Flinn BS. 2010. The use of beneficial microbial endophytes for plant biomass and stress tolerance improvement. Recent Patents on Biotechnology 4:81−95

doi: 10.2174/187220810790069523
[3]

Kobayashi DY, Palumbo JD. 2000. Bacterial endophytes and their effects on plants and uses in agriculture. In Microbial Endophytes, eds. Bacon CW, White JF. New York: Marcel Dekker. pp. 199−233. https://doi.org/10.1201/9781482277302-11

[4]

Hallmann J, Quadt-Hallmann A, Mahaffee WF, Kloepper JW. 1997. Bacterial endophytes in agricultural crops. Canadian Journal of Microbiology 43:895−914

doi: 10.1139/m97-131
[5]

Zhang J, Shi H. 2013. Physiological and molecular mechanisms of plant salt tolerance. Photosynthesis Research 115:1−22

doi: 10.1007/s11120-013-9813-6
[6]

James RA, Blake C, Byrt CS, Munns R. 2011. Major genes for Na+ exclusion, Nax1 and Nax2 (wheat HKT1;4 and HKT1;5), decrease Na+ accumulation in bread wheat leaves under saline and waterlogged conditions. Journal of Experimental Botany 62:2939−47

doi: 10.1093/jxb/err003
[7]

Munns R, Tester M. 2008. Mechanisms of salinity tolerance. Annual Review of Plant Biology 59:651−81

doi: 10.1146/annurev.arplant.59.032607.092911
[8]

Kronzucker HJ, Coskun D, Schulze LM, Wong JR, Britto DT. 2013. Sodium as nutrient and toxicant. Plant and Soil 369:1−23

doi: 10.1007/s11104-013-1801-2
[9]

Barzanti R, Ozino F, Bazzicalupo M, Gabbrielli R, Galardi F, et al. 2007. Isolation and characterization of endophytic bacteria from the nickel hyperaccumulator plant Alyssum bertolonii. Microbial Ecology 53:306−16

doi: 10.1007/s00248-006-9164-3
[10]

Amore A, Parameswaran B, Kumar R, Birolo L, Vinciguerra R, et al. 2015. Application of a new xylanase activity from Bacillus amyloliquefaciens XR44A in brewer's spent grain saccharification. Journal of Chemical Technology & Biotechnology 90:573−81

doi: 10.1002/jctb.4589
[11]

Sierra G. 1957. A simple method for the detection of lipolytic activity of micro-organisms and some observations on the influence of the contact between cells and fatty substrates. Antonie van Leeuwenhoek 23:15−22

doi: 10.1007/BF02545855
[12]

Männistö MK, Häggblom MM. 2006. Characterization of psychrotolerant heterotrophic bacteria from Finnish Lapland. Systematic and Applied Microbiology 29:229−43

doi: 10.1016/j.syapm.2005.09.001
[13]

Gordon SA, Weber RP. 1951. Colorimetric estimation of indoleacetic acid. Plant Physiology 26:192−95

doi: 10.1104/pp.26.1.192
[14]

Graham HD, Thomas LB. 1961. Rapid, simple colorimetric method for the determination of micro quantities of gibberellic acid. Journal of Pharmaceutical Sciences 50:44−48

doi: 10.1002/jps.2600500110
[15]

Mehta S, Nautiyal CS. 2001. An efficient method for qualitative screening of phosphate-solubilizing bacteria. Current Microbiology 43:51−56

doi: 10.1007/s002840010259
[16]

Penrose DM, Glick BR. 2003. Methods for isolating and characterizing ACC deaminase-containing plant growth-promoting rhizobacteria. Physiologia Plantarum 118:10−15

doi: 10.1034/j.1399-3054.2003.00086.x
[17]

Schwyn B, Neilands JB. 1987. Universal chemical assay for the detection and determination of siderophores. Analytical Biochemistry 160:47−56

doi: 10.1016/0003-2697(87)90612-9
[18]

Arora NK, Verma M. 2017. Modified microplate method for rapid and efficient estimation of siderophore produced by bacteria. 3 Biotech 7:381

doi: 10.1007/s13205-017-1008-y
[19]

Abdelwahed S, Trabelsi E, Saadouli I, Kouidhi S, Masmoudi AS, et al. 2022. A new pioneer colorimetric micro-plate method for the estimation of ammonia production by plant growth promoting rhizobacteria (PGPR). Main Group Chemistry 21:55−68

doi: 10.3233/MGC-210077
[20]

da Silveira APD, de Paula Freitas Iório R, Marcos FCC, Fernandes AO, de Souza SACD, et al. 2019. Exploitation of new endophytic bacteria and their ability to promote sugarcane growth and nitrogen nutrition. Antonie van Leeuwenhoek 112:283−95

doi: 10.1007/s10482-018-1157-y
[21]

Stoltzfus JR, So R, Malarvithi PP, Ladha JK, De Bruijn FJ. 1997. Isolation of endophytic bacteria from rice and assessment of their potential for supplying rice with biologically fixed nitrogen. Plant and Soil 194:25−36

doi: 10.1023/A:1004298921641
[22]

Gupta S, Pandey S. 2019. ACC deaminase producing bacteria with multifarious plant growth promoting traits alleviates salinity stress in French bean (Phaseolus vulgaris) plants. Frontiers in Microbiology 10:1506

doi: 10.3389/fmicb.2019.01506
[23]

Wilson K. 2001. Preparation of genomic DNA from bacteria. Current Protocols in Molecular Biology 56:2.4.1−2.4.5

doi: 10.1002/0471142727.mb0204s56
[24]

Tamura K, Stecher G, Kumar S. 2021. MEGA11: molecular evolutionary genetics analysis version 11. Molecular Biology and Evolution 38:3022−27

doi: 10.1093/molbev/msab120
[25]

Heberle H, Meirelles GV, da Silva FR, Telles GP, Minghim R. 2015. InteractiVenn: a web-based tool for the analysis of sets through Venn diagrams. BMC Bioinformatics 16:169

doi: 10.1186/s12859-015-0611-3
[26]

Lata R, Chowdhury S, Gond SK, White JF Jr. 2018. Induction of abiotic stress tolerance in plants by endophytic microbes. Letters in Applied Microbiology 66:268−76

doi: 10.1111/lam.12855
[27]

Eid AM, Fouda A, Abdel-Rahman MA, Salem SS, Elsaied A, et al. 2021. Harnessing bacterial endophytes for promotion of plant growth and biotechnological applications: an overview. Plants 10:935

doi: 10.3390/plants10050935
[28]

Sansanwal R, Ahlawat U, Batra P, Wati L. 2018. Isolation and evaluation of multi-trait novel bacterial endophytes from root nodules of mungbean (Vigna radiata). International Journal of Current Microbiology Applied Sciences 7:2424−30

doi: 10.20546/ijcmas.2018.703.282
[29]

Zdor RE. 2015. Bacterial cyanogenesis: impact on biotic interactions. Journal of Applied Microbiology 118:267−74

doi: 10.1111/jam.12697
[30]

Glick BR. 2014. Bacteria with ACC deaminase can promote plant growth and help to feed the world. Microbiological Research 169:30−39

doi: 10.1016/j.micres.2013.09.009
[31]

Panneerselvam P, Senapati A, Sharma L, Nayak AK, Kumar A, et al. 2021. Understanding rice growth-promoting potential of Enterobacter spp. isolated from long-term organic farming soil in India through a supervised learning approach. Current Research in Microbial Sciences 2:100035

doi: 10.1016/j.crmicr.2021.100035
[32]

Khan SS, Verma V, Rasool S. 2020. Diversity and the role of endophytic bacteria: a review. Botanica Serbica 44:103−20

doi: 10.2298/BOTSERB2002103K
[33]

Luo J, Zhou J, Zhang J. 2018. Aux/IAA gene family in plants: molecular structure, regulation, and function. International Journal of Molecular Sciences 19:259

doi: 10.3390/ijms19010259
[34]

Kang SM, Khan AL, You YH, Kim JG, Kamran M, et al. 2014. Gibberellin production by newly isolated strain Leifsonia soli SE134 and its potential to promote plant growth. Journal of Microbiology and Biotechnology 24:106−12

doi: 10.4014/jmb.1304.04015
[35]

Dheeman S, Baliyan N, Dubey RC, Maheshwari DK, Kumar S, et al. 2020. Combined effects of rhizo-competitive rhizosphere and non-rhizosphere Bacillus in plant growth promotion and yield improvement of Eleusine coracana (Ragi). Canadian Journal of Microbiology 66:111−24

doi: 10.1139/cjm-2019-0103
[36]

Ohyama T. 2010. Nitrogen as a major essential element of plants. In Nitrogen Assimilation in Plants, eds. Ohyama T, Sumiyoshi K. Kerala: Research Signpost. pp. 1−18.

[37]

Sairam RK, Rao KV, Srivastava GC. 2002. Differential response of wheat genotypes to long term salinity stress in relation to oxidative stress, antioxidant activity and osmolyte concentration. Plant Science 163:1037−46

doi: 10.1016/S0168-9452(02)00278-9
[38]

Wu T, Li X, Xu J, Liu L, Ren L, et al. 2021. Diversity and functional characteristics of endophytic bacteria from two grass species growing on an oil-contaminated site in the Yellow River Delta, China. Science of The Total Environment 767:144340

doi: 10.1016/j.scitotenv.2020.144340
[39]

Brígido C, Singh S, Menéndez E, Tavares MJ, Glick BR et al. 2019. Diversity and functionality of culturable endophytic bacterial communities in chickpea plants. Plants 8:42

doi: 10.3390/plants8020042
[40]

Wang Z, Zhu Y, Jing R, Wu X, Li N, et al. 2021. High-throughput sequencing-based analysis of the composition and diversity of endophytic bacterial community in seeds of upland rice. Archives of Microbiology 203:609−20

doi: 10.1007/s00203-020-02058-9