[1]

Collard F, Gasperi J, Gabrielsen GW, Tassin B. 2019. Plastic particle ingestion by wild freshwater fish: a critical review. Environmental Science Technology 53:12974−88

doi: 10.1021/acs.est.9b03083
[2]

Lenaker PL, Baldwin AK, Corsi SR, Mason SA, Reneau PC, et al. 2019. Vertical distribution of microplastics in the water column and surficial sediment from the Milwaukee River Basin to Lake Michigan. Environmental Sience Technology 53:12227−37

doi: 10.1021/acs.est.9b03850
[3]

Auta HS, Emenike CU, Fauziah SH. 2017. Distribution and importance of microplastics in the marine environment: a review of the sources, fate, effects, and potential solutions. Environment International 102:165−76

doi: 10.1016/j.envint.2017.02.013
[4]

Allen S, Allen D, Phoenix VR, Le Roux G, Durántez Jiménez P, et al. 2019. Atmospheric transport and deposition of microplastics in a remote mountain catchment. Nature Geoscience 12:339−44

doi: 10.1038/s41561-019-0335-5
[5]

Horton AA, Walton A, Spurgeon DJ, Lahive E, Svendsen C. 2017. Microplastics in freshwater and terrestrial environments: Evaluating the current understanding to identify the knowledge gaps and future research priorities. Science of the Total Environment 586:127−41

doi: 10.1016/j.scitotenv.2017.01.190
[6]

Jacques O, Prosser RS. 2021. A probabilistic risk assessment of microplastics in soil ecosystems. Science of the Total Environment 757:143987

doi: 10.1016/j.scitotenv.2020.143987
[7]

Scheurer M, Bigalke M. 2018. Microplastics in Swiss floodplain soils. Environmental Science Technology 52:3591−98

doi: 10.1021/acs.est.7b06003
[8]

Ng EL, Huerta Lwanga E, Eldridge SM, Johnston P, Hu HW, et al. 2018. An overview of microplastic and nanoplastic pollution in agroecosystems. Science of the Total Environment 627:1377−88

doi: 10.1016/j.scitotenv.2018.01.341
[9]

Wang F, Feng X, Liu Y, Adams CA, Sun Y, et al. 2022. Micro (nano) plastics and terrestrial plants: Up-to-date knowledge on uptake, translocation, and phytotoxicity. Resources, Conservation Recycling 185:106503

doi: 10.1016/j.resconrec.2022.106503
[10]

Wang F, Wang Q, Adams CA, Sun Y, Zhang S. 2022. Effects of microplastics on soil properties: current knowledge and future perspectives. Journal of Hazardous Materials 424:127531

doi: 10.1016/j.jhazmat.2021.127531
[11]

Iqbal S, Xu J, Allen SD, Khan S, Nadir S, et al. 2020. Unraveling consequences of soil micro-and nano-plastic pollution on soil-plant system: Implications for nitrogen (N) cycling and soil microbial activity. Chemosphere 260:127578

doi: 10.1016/j.chemosphere.2020.127578
[12]

Iqbal S, Xu J, Khan S, Arif MS, Yasmeen T, et al. 2021. Deciphering microplastic ecotoxicology: impacts on crops and soil ecosystem functions. Circular Agricultural Systems 1:8

doi: 10.48130/cas-2021-0008
[13]

Xiao M, Ding J, Luo Y, Zhang H, Yu Y, et al. 2022. Microplastics shape microbial communities affecting soil organic matter decomposition in paddy soil. Journal of Hazardous Materials 431:128589

doi: 10.1016/j.jhazmat.2022.128589
[14]

Kim D, An S, Kim L, Byeon YM, Lee J, et al. 2022. Translocation and chronic effects of microplastics on pea plants (Pisum sativum) in copper-contaminated soil. Journal of Hazardous Materials 436:129194

doi: 10.1016/j.jhazmat.2022.129194
[15]

Wang F, Zhang X, Zhang S, Zhang S, Sun Y. 2020. Interactions of microplastics and cadmium on plant growth and arbuscular mycorrhizal fungal communities in an agricultural soil. Chemosphere 254:126791

doi: 10.1016/j.chemosphere.2020.126791
[16]

Huerta Lwanga E, Mendoza Vega J, Ku Quej V, Chi JdlA, Sanchez del Cid L, et al. 2017. Field evidence for transfer of plastic debris along a terrestrial food chain. Scientific Reports 7:14071

doi: 10.1038/s41598-017-14588-2
[17]

Li L, Luo Y, Li R, Zhou Q, Peijnenburg WJGM, et al. 2020. Effective uptake of submicrometre plastics by crop plants via a crack-entry mode. Nature Sustainability 3:929−37

doi: 10.1038/s41893-020-0567-9
[18]

Conti GO, Ferrante M, Banni M, Favara C, Nicolosi I, et al. 2020. Micro-and nano-plastics in edible fruit and vegetables. The first diet risks assessment for the general population. Environmental Research 187:109677

doi: 10.1016/j.envres.2020.109677
[19]

Moghaddasi S, Hossein Khoshgoftarmanesh A, Karimzadeh F, Chaney R. 2015. Fate and effect of tire rubber ash nano-particles (RANPs) in cucumber. Ecotoxicology Environmental Safety 115:137−43

doi: 10.1016/j.ecoenv.2015.02.020
[20]

Liu Y, Cui W, Li W, Xu S, Sun Y, et al. 2023. Effects of microplastics on cadmium accumulation by rice and arbuscular mycorrhizal fungal communities in cadmium-contaminated soil. Journal of Hazardous Materials 442:130102

doi: 10.1016/j.jhazmat.2022.130102
[21]

Chen Q, Zhang H, Allgeier A, Zhou Q, Ouellet JD, et al. 2019. Marine microplastics bound dioxin-like chemicals: model explanation and risk assessment. Journal of Hazardous Materials 364:82−90

doi: 10.1016/j.jhazmat.2018.10.032
[22]

Wang F, Yang W, Cheng P, Zhang S, Zhang S, et al. 2019. Adsorption characteristics of cadmium onto microplastics from aqueous solutions. Chemosphere 235:1073−80

doi: 10.1016/j.chemosphere.2019.06.196
[23]

Ren Z, Gui X, Xu X, Zhao L, Qiu H, et al. 2021. Microplastics in the soil-groundwater environment: aging, migration, and co-transport of contaminants – a critical review. Journal of Hazardous Materials 419:126455

doi: 10.1016/j.jhazmat.2021.126455
[24]

Tang S, Lin L, Wang X, Feng A, Yu A. 2020. Pb (II) uptake onto nylon microplastics: interaction mechanism and adsorption performance. Journal of Hazardous Materials 386:121960

doi: 10.1016/j.jhazmat.2019.121960
[25]

Kalčíková G, Skalar T, Marolt G, Jemec Kokalj A. 2020. An environmental concentration of aged microplastics with adsorbed silver significantly affects aquatic organisms. Water Research 175:115644

doi: 10.1016/j.watres.2020.115644
[26]

Guo X, Hu G, Fan X, Jia H. 2020. Sorption properties of cadmium on microplastics: the common practice experiment and a two-dimensional correlation spectroscopic study. Ecotoxicology Environmental Safety 190:110118

doi: 10.1016/j.ecoenv.2019.110118
[27]

Li X, Mei Q, Chen L, Zhang H, Dong B, et al. 2019. Enhancement in adsorption potential of microplastics in sewage sludge for metal pollutants after the wastewater treatment process. Water Research 157:228−37

doi: 10.1016/j.watres.2019.03.069
[28]

Li C, Sun H, Shi Y, Zhao Z, Zhang Z, et al. 2023. Polyethylene and poly (butyleneadipate-co-terephthalate)-based biodegradable microplastics modulate the bioavailability and speciation of Cd and As in soil: Insights into transformation mechanisms. Journal of Hazardous Materials 445:130638

doi: 10.1016/j.jhazmat.2022.130638
[29]

Zhou Y, Wang J, Zou M, Jia Z, Zhou S, et al. 2020. Microplastics in soils: A review of methods, occurrence, fate, transport, ecological and environmental risks. Science of the Total Environment 748:141368

doi: 10.1016/j.scitotenv.2020.141368
[30]

Yu H, Zhang Z, Zhang Y, Fan P, Xi B, et al. 2021. Metal type and aggregate microenvironment govern the response sequence of speciation transformation of different heavy metals to microplastics in soil. Science of the Total Environment 752:141956

doi: 10.1016/j.scitotenv.2020.141956
[31]

Sipos P, Németh T, Kis VK, Mohai I. 2008. Sorption of copper, zinc and lead on soil mineral phases. Chemosphere 73:461−69

doi: 10.1016/j.chemosphere.2008.06.046
[32]

Hüffer T, Metzelder F, Sigmund G, Slawek S, Schmidt TC, et al. 2019. Polyethylene microplastics influence the transport of organic contaminants in soil. Science of the Total Environment 657:242−47

doi: 10.1016/j.scitotenv.2018.12.047
[33]

Velzeboer I, Kwadijk CJAF, Koelmans AA. 2014. Strong sorption of PCBs to nanoplastics, microplastics, carbon nanotubes, and fullerenes. Environmental Science Technology 48:4869−76

doi: 10.1021/es405721v
[34]

Serrano S, Garrido F, Campbell CG, Garcıa-González MT. 2005. Competitive sorption of cadmium and lead in acid soils of Central Spain. Geoderma 124:91−104

doi: 10.1016/j.geoderma.2004.04.002
[35]

Huang B, Li D, Yuan Z, Zheng M, Liang C, et al. 2022. Adsorption characteristics of cadmium onto aggregates of various acidic red soils from South China. Journal of Soils and Sediments 22:120−33

doi: 10.1007/s11368-021-03024-8
[36]

Li J, Zhang K, Zhang H. 2018. Adsorption of antibiotics on microplastics. Environmental Pollution 237:460−67

doi: 10.1016/j.envpol.2018.02.050
[37]

Herzke D, Anker-Nilssen T, Nøst TH, Götsch A, Christensen-Dalsgaard S, et al. 2016. Negligible impact of ingested microplastics on tissue concentrations of persistent organic pollutants in northern fulmars off coastal Norway. Environmental Science Technology 50:1924−33

doi: 10.1021/acs.est.5b04663
[38]

Santini G, Memoli V, Vitale E, Di Natale G, Trifuoggi M, et al. 2023. Metal Release from Microplastics to Soil: Effects on Soil Enzymatic Activities and Spinach Production. International Journal of Environmental Research Public Health 20:3106

doi: 10.3390/ijerph20043106
[39]

Chen L, Han L, Feng Y, He J, Xing B. 2022. Soil structures and immobilization of typical contaminants in soils in response to diverse microplastics. Journal of Hazardous Materials 438:129555

doi: 10.1016/j.jhazmat.2022.129555
[40]

Cao Y, Ma X, Chen N, Chen T, Zhao M, et al. 2023. Polypropylene microplastics affect the distribution and bioavailability of cadmium by changing soil components during soil aging. Journal of Hazardous Materials 443:130079

doi: 10.1016/j.jhazmat.2022.130079
[41]

Yang X, Li Z, Ma C, Yang Z, Wei J, et al. 2022. Microplastics influence on Hg methylation in diverse paddy soils. Journal of Hazardous Materials 423:126895

doi: 10.1016/j.jhazmat.2021.126895
[42]

Wang P, Chen H, Kopittke PM, Zhao FJ. 2019. Cadmium contamination in agricultural soils of China and the impact on food safety. Environmental Pollution 249:1038−48

doi: 10.1016/j.envpol.2019.03.063
[43]

Liu L, Li W, Song W, Guo M. 2018. Remediation techniques for heavy metal-contaminated soils: Principles and applicability. Science of the Total Environment 633:206−19

doi: 10.1016/j.scitotenv.2018.03.161
[44]

Sarwar N, Imran M, Shaheen MR, Ishaque W, Kamran MA, et al. 2017. Phytoremediation strategies for soils contaminated with heavy metals: modifications and future perspectives. Chemosphere 171:710−21

doi: 10.1016/j.chemosphere.2016.12.116
[45]

Iqbal B, Javed Q, Khan I, Tariq M, Ahmad N, et al. 2023. Influence of soil microplastic contamination and cadmium toxicity on the growth, physiology, and root growth traits of Triticum aestivum L. South African Journal of Botany 160:369−75

doi: 10.1016/j.sajb.2023.07.025
[46]

Zhao M, Li C, Zhang C, Han B, Wang X, et al. 2022. Typical microplastics in field and facility agriculture dynamically affect available cadmium in different soil types through physicochemical dynamics of carbon, iron and microbes. Journal of hazardous materials 440:129726

doi: 10.1016/j.jhazmat.2022.129726
[47]

Rehman M, Liu L, Wang Q, Saleem MH, Bashir S, et al. 2019. Copper environmental toxicology, recent advances, and future outlook: a review. Environmental Science Pollution Research 26:18003−16

doi: 10.1007/s11356-019-05073-6
[48]

De Conti L, Ceretta CA, Melo GWB, Tiecher TL, Silva LOS, et al. 2019. Intercropping of young grapevines with native grasses for phytoremediation of Cu-contaminated soils. Chemosphere 216:147−56

doi: 10.1016/j.chemosphere.2018.10.134
[49]

De Conti L, Cesco S, Mimmo T, Pii Y, Valentinuzzi F, et al. 2020. Iron fertilization to enhance tolerance mechanisms to copper toxicity of ryegrass plants used as cover crop in vineyards. Chemosphere 243:125298

doi: 10.1016/j.chemosphere.2019.125298
[50]

Zong X, Zhang J, Zhu J, Zhang L, Jiang L, et al. 2021. Effects of polystyrene microplastic on uptake and toxicity of copper and cadmium in hydroponic wheat seedlings (Triticum aestivum L.). Ecotoxicology Environmental Safety 217:112217

doi: 10.1016/j.ecoenv.2021.112217
[51]

Jia H, Wu D, Yu Y, Han S, Sun L, Li M. 2022. Impact of microplastics on bioaccumulation of heavy metals in rape (Brassica napus L.). Chemosphere 288:132576

doi: 10.1016/j.chemosphere.2021.132576
[52]

Zulfiqar U, Farooq M, Hussain S, Maqsood M, Hussain M, et al. 2019. Lead toxicity in plants: Impacts and remediation. Journal of Environmental Management 250:109557

doi: 10.1016/j.jenvman.2019.109557
[53]

Rillig MC, Lehmann A, de Souza Machado AA, Yang G. 2019. Microplastic effects on plants. New Phytologist 223:1066−70

doi: 10.1111/nph.15794
[54]

Boots B, Russell CW, Green DS. 2019. Effects of microplastics in soil ecosystems: above and below ground. Environmental Science and Technology 53:11496−506

doi: 10.1021/acs.est.9b03304
[55]

Wang H-T, Ding J, Xiong C, Zhu D, Li G, et al. 2019. Exposure to microplastics lowers arsenic accumulation and alters gut bacterial communities of earthworm Metaphire californica. Environmental Pollution 251:110−16

doi: 10.1016/j.envpol.2019.04.054
[56]

Dong Y, Gao M, Song Z, Qiu W. 2020. Microplastic particles increase arsenic toxicity to rice seedlings. Environmental Pollution 259:113892

doi: 10.1016/j.envpol.2019.113892
[57]

Driscoll CT, Mason RP, Chan HM, Jacob DJ, Pirrone N. 2013. Mercury as a global pollutant: sources, pathways, and effects. Environmental Science Technology 47:4967−83

doi: 10.1021/es305071v
[58]

Du B, Feng X, Li P, Yin R, Yu B, et al. 2018. Use of mercury isotopes to quantify mercury exposure sources in inland populations, China. Environmental Science Technology 52:5407−16

doi: 10.1021/acs.est.7b05638
[59]

Cheng S, Shi M, Xing L, Wang X, Gao H, et al. 2020. Sulfamethoxazole affects the microbial composition and antibiotic resistance gene abundance in soil and accumulates in lettuce. Environmental Science Pollution Research 27:29257−65

doi: 10.1007/s11356-020-08902-1
[60]

Haack SK, Metge DW, Fogarty LR, Meyer MT, Barber LB, et al. 2012. Effects on groundwater microbial communities of an engineered 30-day in situ exposure to the antibiotic sulfamethoxazole. Environmental Science Technology 46:7478−86

doi: 10.1021/es3009776
[61]

Bouwmeester H, Hollman PCH, Peters RJB. 2015. Potential health impact of environmentally released micro-and nanoplastics in the human food production chain: experiences from nanotoxicology. Environmental Science and Technology 49:8932−47

doi: 10.1021/acs.est.5b01090
[62]

Llorca M, Schirinzi G, Martínez M, Barceló D, Farré M. 2018. Adsorption of perfluoroalkyl substances on microplastics under environmental conditions. Environmental Pollution 235:680−91

doi: 10.1016/j.envpol.2017.12.075
[63]

Xu M, Du W, Ai F, Xu F, Zhu J, et al. 2021. Polystyrene microplastics alleviate the effects of sulfamethazine on soil microbial communities at different CO2 concentrations. Journal of Hazardous Materials 413:125286

doi: 10.1016/j.jhazmat.2021.125286
[64]

Khan KY, Li G, Du D, Ali B, Zhang S, et al. 2023. Impact of polystyrene microplastics with combined contamination of norfloxacin and sulfadiazine on Chrysanthemum coronarium L. Environmental Pollution 316:120522

doi: 10.1016/j.envpol.2022.120522
[65]

Li Y, Hu B, Gao S, Tong X, Jiang L, et al. 2020. Comparison of 17β-estradiol adsorption on soil organic components and soil remediation agent-biochar. Environmental Pollution 263:114572

doi: 10.1016/j.envpol.2020.114572
[66]

Hu B, Li Y, Jiang L, Chen X, Wang L, et al. 2020. Influence of microplastics occurrence on the adsorption of 17β-estradiol in soil. Journal of Hazardous Materials 400:123325

doi: 10.1016/j.jhazmat.2020.123325
[67]

Duan Q, Li X, Wu Z, Alsaedi A, Hayat T, et al. 2019. Adsorption of 17β-estradiol from aqueous solutions by a novel hierarchically nitrogen-doped porous carbon. Journal of Colloid Interface Science 533:700−8

doi: 10.1016/j.jcis.2018.09.007
[68]

Crampon M, Soulier C, Sidoli P, Hellal J, Joulian C, et al. 2021. Dynamics of soil microbial communities during diazepam and oxazepam biodegradation in soil flooded by water from a WWTP. Frontiers in Microbiology 12:742000

doi: 10.3389/fmicb.2021.742000
[69]

Adhami S, Jamshidi-Zanjani A, Darban AK. 2021. Phenanthrene removal from the contaminated soil using the electrokinetic-Fenton method and persulfate as an oxidizing agent. Chemosphere 266:128988

doi: 10.1016/j.chemosphere.2020.128988
[70]

Xu B, Liu F, Cryder Z, Huang D, Lu Z, et al. 2020. Microplastics in the soil environment: occurrence, risks, interactions and fate – a review. Critical Reviews in Environmental Science Technology 50:2175−222

doi: 10.1080/10643389.2019.1694822
[71]

Xu B, Huang D, Liu F, Alfaro D, Lu Z, et al. 2021. Contrasting effects of microplastics on sorption of diazepam and phenanthrene in soil. Journal of Hazardous Materials 406:124312

doi: 10.1016/j.jhazmat.2020.124312