[1] |
Food and Agricultural Organization of the United Nations (FAO). 2023. Crops Statistics of 2021. www.fao.org/faostat/en/#data/QCL (Accessed on March 30, 2023). |
[2] |
Fardin F, Sani B, Moaveni P, Afsharmanesh G, Mozafari H. 2023. Nutritional value and agronomic traits of forage sorghum under drought stress. Biocatalysis and Agricultural Biotechnology 48:102624 doi: 10.1016/j.bcab.2023.102624 |
[3] |
Astoreca AL, Emateguy LG, Alconada TM. 2019. Fungal contamination and mycotoxins associated with sorghum crop: its relevance today. European Journal of Plant Pathology 155:381−92 doi: 10.1007/s10658-019-01797-w |
[4] |
Mwamahonje A, Eleblu JSY, Ofori K, Deshpande S, Feyissa T, et al. 2021. Sorghum Production Constraints, Trait Preferences, and Strategies to Combat Drought in Tanzania. Sustainability 13(23):12942 doi: 10.3390/su132312942 |
[5] |
Asam S, Rychlik M. 2013. Potential health hazards due to the occurrence of the mycotoxin tenuazonic acid in infant food. European Food Research and Technology 236:491−97 doi: 10.1007/s00217-012-1901-x |
[6] |
Oliveira RC, Goncalves SS, Oliveira MS, Dilkin P, Mallmann CA, et al. 2017. Natural occurrence of tenuazonic acid and Phoma sorghina in Brasilian sorghum grains at different maturity stages. Food Chemistry 230:491−96 doi: 10.1016/j.foodchem.2017.03.079 |
[7] |
Clausi L. 2022. Relevance of the sorghum crop with emphasis on its contamination with mycotoxins. Thesis. National University of La Plata, Argentina. |
[8] |
Griffin GF, Chu FS. 1987. Toxicity of the Alternaria metabolites alternariol, alternariol methyl ether, altenuene, and tenuazonic acid in the chicken embryo assay. Applied and Environmental Microbiology 46:1420−22 doi: 10.1128/aem.46.6.1420-1422.1983 |
[9] |
Yekeler H, Bitmiş K, Ozçelik N, Doymaz MZ, Calta M. 2001. Analysis of toxic effects of Alternaria toxins on esophagus of mice by light and electron microscopy. Toxicologic Pathology 29:492−97 doi: 10.1080/01926230152499980 |
[10] |
Rosett T, Sankhala RH, Stickings CE, Taylor MEU, Thomas R. 1957. Studies in the biochemistry of micro-organisms. 103. Metabolites of Alternaria tenuis Auct.: culture filtrate products. Biochemistry Journal 67:390−400 doi: 10.1042/bj0670390 |
[11] |
Lee HB, Patriarca A, Magan N. 2015. Alternaria in food: ecophysiology, mycotoxin production and toxicology. Mycobiology 43:93−106 doi: 10.5941/MYCO.2015.43.2.93 |
[12] |
Meronuck RA, Steele JA, Mirocha CJ, Christensen CM. 1972. Tenuazonic acid, a toxin produced by Alternaria alternata. Applied on Microbiology 23:613−17 doi: 10.1128/am.23.3.613-617.1972 |
[13] |
Steyn PS, Rabie CJ. 1976. Characterization of magnesium and calcium tenuazonate from Phoma sorghina. Phytochemistry 15:1977−79 doi: 10.1016/S0031-9422(00)88860-3 |
[14] |
Rychlik M, Lepper H, Weidner C, Asam S. 2016. Risk evaluation of the Alternaria mycotoxin tenuazonic acid in foods for adults and infants and subsequent risk management. Food Control 68:181−85 doi: 10.1016/j.foodcont.2016.03.035 |
[15] |
Bandyopadhyay R, Mughogho LK, Satyanarayana MV, Kalisz ME. 1991. Occurrence of airborne spores of fungi causing grain mold over a sorghum crop. Mycological Research 95:1315−20 doi: 10.1016/S0953-7562(09)80583-2 |
[16] |
Hussaini AM, Timothy AG, Olufunmilayo HA, Ezekiel AS, Godwin HO. 2009. Fungi and some mycotoxins found in mouldy sorghum in Niger State, Nigeria. World Journal of Agricultural Sciences 5(1):5−17 |
[17] |
de Oliveira RC, Carnielli-Queiroz L, Correa B. 2018. Epicoccum sorghinum in food: occurrence, genetic aspects and tenuazonic acid production. Current Opinion on Food Science 23:44−48 doi: 10.1016/j.cofs.2018.05.011 |
[18] |
Prendes LP, Merín MG, Fontana AR, Bottini RA, Ramirez ML, et al. 2018. Isolation, identification and selection of antagonistic yeast against Alternaria alternata infection and tenuazonic acid production in wine grapes from Argentina. International Journal of Food Microbiology 266:14−20 doi: 10.1016/j.ijfoodmicro.2017.10.033 |
[19] |
González HH, Martínez EJ, Resnik SL. 1997. Fungi associated with sorghum grain from Argentina. Mycopathologia 139:35−41 doi: 10.1023/a:1006803901969 |
[20] |
Emateguy L, Giorda LM, Lombardo L, Astoreca A. 2018. Aislamiento y caracterización de hongos potencialmente toxicogénicos asociados a granos de sorgo en Argentina. 5° Latin American Congress of Engineering and Applied Sciences "CLICAP 2018", Mendoza, Argentina, 2018. pp. 239. http://fcai.uncuyo.edu.ar/upload/01-memorias-clicap-2018-resumenes.pdf |
[21] |
Boerema GH, Gruyter J, Noordeloos ME, Hamers MEC. 2004. Phoma identification manual. Differentiation of specific and infraspecific taxa in culture. Wallingford: CABI. www.cabidigitallibrary.org/doi/book/10.1079/9780851997438.0000 |
[22] |
Aveskamp MM, de Gruyter J, Woudenberg JHC, Verkley GJM, Crous PW. 2010. Highlights of the Didymellaceae: a polyphasic approach to characterize Phoma and related pleosporalean genera. Studies in Mycology 65:1−60 doi: 10.3114/sim.2010.65.01 |
[23] |
King AD Jr, Hocking AD, Pitt JI. 1979. Dichloran-rose bengal medium for enumeration and isolation of moulds from foods. Applied of Environmental Microbiology 37:959−64 doi: 10.1128/aem.37.5.959-964.1979 |
[24] |
Andersen B, Hansen ME, Smedsgaard J. 2005. Automated and unbiased image analyses as tools in phenotypic classification of small-spored Alternaria spp. Phytopathology 95:1021−29 doi: 10.1094/PHYTO-95-1021 |
[25] |
Tannous J, Atoui A, El Khoury A, Kantar S, Chdid N, et al. 2015. Development of a real-time PCR assay for Penicillium expansum quantification and patulin estimation in apples. Food Microbiology 50:28−37 doi: 10.1016/j.fm.2015.03.001 |
[26] |
Glass NL, Donaldson GC. 1995. Development of primer sets designed for use with the PCR to amplify conserved genes from filamentous ascomycetes. Applied of Environmental Microbiology 61(4):1323−30 doi: 10.1128/aem.61.4.1323-1330.1995 |
[27] |
Hall TA. 1999. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series 41:95−98 |
[28] |
Raja HA, Miller AN, Pearce CJ, Oberlies NH. 2017. Fungal identification using molecular tools: a primer for the natural products research community. Journal of Natural Products 80:756−70 doi: 10.1021/acs.jnatprod.6b01085 |
[29] |
Chen Q, Hou LW, Duan WJ, Crous PW, Cai L. 2017. Didymellaceae revisited. Studies in Mycology 87:105−59 doi: 10.1016/j.simyco.2017.06.002 |
[30] |
Hou LW, Groenewald JZ, Pfenning LH, Yarden O, Crous PW, et al. 2020. The phoma-like dilemma. Studies in Mycology 96:309−96 doi: 10.1016/j.simyco.2020.05.001 |
[31] |
Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, et al. 2007. Clustal W and Clustal X version 2.0. Bioinformatics 23:2947−48 doi: 10.1093/bioinformatics/btm404 |
[32] |
Stamatakis A. 2006. RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22:2688−90 doi: 10.1093/bioinformatics/btl446 |
[33] |
de Gruyter J, Aveskamp MM, Woudenberg JHC, Verkley GJM, Groenewald JZ, et al. 2009. Molecular phylogeny of Phoma and allied anamorph genera: Towards a reclassification of the Phoma complex. Mycological Research 113:508−19 doi: 10.1016/j.mycres.2009.01.002 |
[34] |
Stokholm MS, Wulff EG, Zida EP, Thio IG, Néya JB, et al. 2016. DNA barcoding and isolation of vertically transmitted ascomycetes in sorghum from Burkina Faso: Epicoccum sorghinum is dominant in seedlings and appears as a common root pathogen. Microbiological Research 191:38−50 doi: 10.1016/j.micres.2016.05.004 |
[35] |
Aveskamp MM, de Gruyter J, Crous PW. 2008. Biology and recent developments in the systematics of Phoma, a complex genus of major quarantine significance. Fungal Diversity 31:1−18 |
[36] |
Chen Q, Jiang JR, Zhang GZ, Cai L, Crous PW. 2015a. Resolving the Phoma enigma. Studies in Mycology 82:137−217 doi: 10.1016/j.simyco.2015.10.003 |
[37] |
Chen Q, Zhang K, Zhang G, Cai L. 2015b. A polyphasic approach to characterise two novel species of Phoma (Didymellaceae) from China. Phytotaxa 197:267−81 doi: 10.11646/phytotaxa.197.4.4 |
[38] |
Aveskamp MM, Verkley GJM, de Gruyter J, Maurice MA, Woudenberg JHC, Crous PW. 2009. DNA phylogeny reveals polyphyly of Phoma section Peyronellaea and multiple taxonomic novelties. Mycologia 101(3):363−82 doi: 10.3852/08-199 |
[39] |
Oliveira RC, Goncalves SS, Silva CDC, Dilkin P, Madrid H, et al. 2019. Polyphasic characterization of Epicoccum sorghinum: A tenuazonic acid producer isolated from sorghum grain. International Journal of Food Microbiology 292:1−7 doi: 10.1016/j.ijfoodmicro.2018.12.004 |