[1] |
Yan Q, Wu F, Xu P, Sun Z, Li J, et al. 2021. The elephant grass (Cenchrus purpureus) genome provides insights into anthocyanidin accumulation and fast growth. Molecular Ecology Resources 21:526−42 doi: 10.1111/1755-0998.13271 |
[2] |
Rocha JRASC, Machado JC, Carneiro PCS, Carneiro JC, Resende MDV, et al. 2017. Bioenergetic potential and genetic diversity of elephantgrass via morpho-agronomic and biomass quality traits. Industrial Crops and Products 95:485−92 doi: 10.1016/j.indcrop.2016.10.060 |
[3] |
Oliveira MLF, Daher RF, Gravina GdA, da Silva V, Viana AP, et al. 2014. Pre-breeding of elephant grass for energy purposes and biomass analysis in Campos dos Goytacazes-RJ, Brazil. African Journal of Agricultural Research 9:2743−58 doi: 10.5897/AJAR2014.8900 |
[4] |
Debnath B, Duarah P, Haldar D, Purkait MK. 2022. Improving the properties of corn starch films for application as packaging material via reinforcement with microcrystalline cellulose synthesized from elephant grass. Food Packaging and Shelf Life 34:100937 doi: 10.1016/j.fpsl.2022.100937 |
[5] |
Daud Z, Mohd Hatta MZ, Mohd Kassim AS, Aripin AM, Awang H. 2014. Analysis of Napier grass (Pennisetum purpureum) as a potential alternative fibre in paper industry. Materials Research Innovations 18:S6-18−S6-20 doi: 10.1179/1432891714z.000000000925 |
[6] |
Wu XQ, Liu PD, Liu Q, Xu SY, Zhang YC, et al. 2021. Production of cellulose nanofibrils and films from elephant grass using deep eutectic solvents and a solid acid catalyst. RSC Advances 11:14071−78 doi: 10.1039/d1ra02259h |
[7] |
Yi T, Zhao H, Mo Q, Pan D, Liu Y, et al. 2020. From cellulose to cellulose nanofibrils—A comprehensive review of the preparation and modification of cellulose nanofibrils. Materials 13:5062 doi: 10.3390/ma13225062 |
[8] |
Thomas B, Raj MC, Athira KB, Rubiyah MH, Joy J, et al. 2018. Nanocellulose, a versatile green platform: from biosources to materials and their applications. Chemical Reviews 118:11575−625 doi: 10.1021/acs.chemrev.7b00627 |
[9] |
Nascimento SA, Rezende CA. 2018. Combined approaches to obtain cellulose nanocrystals, nanofibrils and fermentable sugars from elephant grass. Carbohydrate Polymers 180:38−45 doi: 10.1016/j.carbpol.2017.09.099 |
[10] |
Na CI, Fedenko JR, Sollenberger LE, Erickson JE. 2016. Harvest management affects biomass composition responses of C4 perennial bioenergy grasses in the humid subtropical USA. Global Change Biology Bioenergy 8:1150−61 doi: 10.1111/gcbb.12319 |
[11] |
Na CI, Sollenberger LE, Fedenko JR, Erickson JE, Woodard KR. 2016. Seasonal changes in chemical composition and leaf proportion of elephantgrass and energycane biomass. Industrial Crops and Products 94:107−16 doi: 10.1016/j.indcrop.2016.07.009 |
[12] |
Rengsirikul K, Ishii Y, Kangvansaichol K, Sripichitt P, Punsuvon V, et al. 2013. Biomass yield, chemical composition and potential ethanol yields of 8 cultivars of napiergrass (Pennisetum purpureum Schumach. ) harvested 3-monthly in central Thailand. Journal of Sustainable Bioenergy Systems 3:107−12 doi: 10.4236/jsbs.2013.32015 |
[13] |
Chaparro CJ, Sollenberger LE. 1997. Nutritive value of clipped 'Mott' elephantgrass herbage. Agronomy Journal 89:789−93 doi: 10.2134/agronj1997.00021962008900050012x |
[14] |
Agbor VB, Cicek N, Sparling R, Berlin A, Levin DB. 2011. Biomass pretreatment: fundamentals toward application. Biotechnology Advances 29:675−85 doi: 10.1016/j.biotechadv.2011.05.005 |
[15] |
Pérez J, Muñoz-Dorado J, de la Rubia T, Martínez J. 2002. Biodegradation and biological treatments of cellulose, hemicellulose and lignin: an overview. International Microbiology 5:53−63 doi: 10.1007/s10123-002-0062-3 |
[16] |
Martins MAR, Pinho SP, Coutinho JAP. 2019. Insights into the nature of eutectic and deep eutectic mixtures. Journal of Solution Chemistry 48:962−82 doi: 10.1007/s10953-018-0793-1 |
[17] |
Ji Q, Yu X, Yagoub AEGA, Chen L, Zhou C. 2021. Efficient cleavage of strong hydrogen bonds in sugarcane bagasse by ternary acidic deep eutectic solvent and ultrasonication to facile fabrication of cellulose nanofibers. Cellulose 28:6159−82 doi: 10.1007/s10570-021-03876-w |
[18] |
Masarin F, Gurpilhares DB, Baffa DC, Barbosa MH, Carvalho W, et al. 2011. Chemical composition and enzymatic digestibility of sugarcane clones selected for varied lignin content. Biotechnology for Biofuels 4:55 doi: 10.1186/1754-6834-4-55 |
[19] |
Xiong S, Zuo X, Zhu Y. 2005. Determination of cellulose, hemicellulose and lignin in rice hull. Cereal & Feed Industry 2005(8):40−41 doi: 10.3969/j.issn.1003-6202.2005.08.018 |
[20] |
Mishra P, Thakur MS, Khan A. 2023. Proximate analysis of poultry and fish feed ingredients in Madhya Pradesh and Chhattisgarh states. The Pharma Innovation 12:1659−62 |
[21] |
Vogel KP, Pedersen JF, Masterson SD, Toy JJ. 1999. Evaluation of a filter bag system for NDF, ADF, and IVDMD forage analysis. Crop Science 39:276−79 doi: 10.2135/cropsci1999.0011183X003900010042x |
[22] |
McComb EA, McCready RM. 1952. Colorimetric determination of pectic substances. Analytical Chemistry 24:1630−32 doi: 10.1021/ac60070a036 |
[23] |
Segal L, Creely JJ, Martin AE Jr, Conrad CM. 1959. An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Textile Research Journal 29:786−94 doi: 10.1177/004051755902901003 |
[24] |
Okahisa Y, Sakata H. 2019. Effects of growth stage of bamboo on the production of cellulose nanofibers. Fibers and Polymers 20:1641−48 doi: 10.1007/s12221-019-8581-0 |
[25] |
Kamran M, Cui W, Ahmad I, Meng X, Zhang X, et al. 2018. Effect of paclobutrazol, a potential growth regulator on stalk mechanical strength, lignin accumulation and its relation with lodging resistance of maize. Plant Growth Regulation 84:317−32 doi: 10.1007/s10725-017-0342-8 |
[26] |
Van Soest PJ, Robertson JB, Lewis BA. 1991. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. Journal of Dairy Science 74:3583−97 doi: 10.3168/jds.S0022-0302(91)78551-2 |
[27] |
Guretzky JA, Biermacher JT, Cook BJ, Kering MK, Mosali J. 2011. Switchgrass for forage and bioenergy: harvest and nitrogen rate effects on biomass yields and nutrient composition. Plant and Soil 339:69−81 doi: 10.1007/s11104-010-0376-4 |
[28] |
Xiao C, Anderson CT. 2013. Roles of pectin in biomass yield and processing for biofuels. Frontiers in Plant Science 4:67 doi: 10.3389/fpls.2013.00067 |
[29] |
Chanliaud E, Gidley MJ. 1999. In vitro synthesis and properties of pectin/Acetobacter xylinus cellulose composites. The Plant Journal 20:25−35 doi: 10.1046/j.1365-313X.1999.00571.x |
[30] |
Liyanage S, Abidi N. 2019. Molecular weight and organization of cellulose at different stages of cotton fiber development. Textile Research Journal 89:726−38 doi: 10.1177/0040517517753642 |
[31] |
Sene CFB, McCann MC, Wilson RH, Grinter R. 1994. Fourier-transform raman and fourier-transform infrared spectroscopy (an investigation of five higher plant cell walls and their components). Plant Physiology 106:1623−31 doi: 10.1104/pp.106.4.1623 |
[32] |
Matsuda Y, Kowsaka K, Okajima K, Kamide K. 1992. Structural change of cellulose contained in immature cotton boll during its growth. Polymer International 27:347−51 doi: 10.1002/pi.4990270410 |
[33] |
Yue Y, Han J, Han G, Aita GM, Wu Q. 2015. Cellulose fibers isolated from energycane bagasse using alkaline and sodium chlorite treatments: Structural, chemical and thermal properties. Industrial Crops and Products 76:355−63 doi: 10.1016/j.indcrop.2015.07.006 |
[34] |
Chirayil CJ, Joy J, Mathew L, Mozetic M, Koetz J, et al. 2014. Isolation and characterization of cellulose nanofibrils from Helicteres isora plant. Industrial Crops and Products 59:27−34 doi: 10.1016/j.indcrop.2014.04.020 |