[1]

Fattorini R, Glover BJ. 2020. Molecular mechanisms of pollination biology. Annual Review of Plant Biology 71:487−515

doi: 10.1146/annurev-arplant-081519-040003
[2]

Broz AK, Bedinger PA. 2021. Pollen-pistil interactions as reproductive barriers. Annual Review of Plant Biology 72:615−39

doi: 10.1146/annurev-arplant-080620-102159
[3]

Baack E, Melo MC, Rieseberg LH, Ortiz-Barrientos D. 2015. The origins of reproductive isolation in plants. New Phytologist 207:968−84

doi: 10.1111/nph.13424
[4]

Heslop-Harrison Y, Shivanna KR. 1977. The receptive surface of the angiosperm stigma. Annals of Botany 41:1233−58

doi: 10.1093/oxfordjournals.aob.a085414
[5]

Dumas C. 1977. Lipochemistry of the progamic stage of a self-incompatible species: neutral lipids and fatty acids of the secretory stigma during its glandular activity, and of the solid style, the ovary and the anther in Forsythia intermedia Zab. (Heterostylic species). Planta 137:177−84

doi: 10.1007/BF00387556
[6]

Wolters-Arts M, Lush WM, Mariani C. 1998. Lipids are required for directional pollen-tube growth. Nature 392:818−21

doi: 10.1038/33929
[7]

Sanchez AM, Bosch M, Bots M, Nieuwland J, Feron R, et al. 2004. Pistil factors controlling pollination. The Plant Cell 16:S98−S106

doi: 10.1105/tpc.017806
[8]

Wolters-Arts M, Van Der Weerd L, Van Aelst AC, Van Der Weerd J, Van As H, et al. 2002. Water-conducting properties of lipids during pollen hydration. Plant, Cell & Environment 25:513−19

doi: 10.1046/j.1365-3040.2002.00827.x
[9]

Heslop-Harrison Y. 2000. Control gates and micro-ecology: the pollen-stigma interaction in perspective. Annals of Botany 85:5−13

doi: 10.1006/anbo.1999.1063
[10]

Edlund AF, Swanson R, Preuss D. 2004. Pollen and stigma structure and function: the role of diversity in pollination. The Plant Cell 16:S84−S97

doi: 10.1105/tpc.015800
[11]

Liu C, Shen L, Xiao Y, Vyshedsky D, Peng C, et al. 2021. Pollen PCP-B peptides unlock a stigma peptide–receptor kinase gating mechanism for pollination. Science 372:171−75

doi: 10.1126/science.abc6107
[12]

Doucet J, Lee HK, Goring DR. 2016. Pollen acceptance or rejection: a tale of two pathways. Trends in Plant Science 21:1058−67

doi: 10.1016/j.tplants.2016.09.004
[13]

Iwano M, Igarashi M, Tarutani Y, Kaothien-Nakayama P, Nakayama H, et al. 2014. A pollen coat–inducible autoinhibited Ca2+-ATPase expressed in stigmatic papilla cells is required for compatible pollination in the Brassicaceae. The Plant Cell 26:636−49

doi: 10.1105/tpc.113.121350
[14]

Iwano M, Ito K, Fujii S, Kakita M, Asano-Shimosato H, et al. 2015. Calcium signalling mediates self-incompatibility response in the Brassicaceae. Nature Plants 1:15128

doi: 10.1038/nplants.2015.128
[15]

Sankaranarayanan S, Ju Y, Kessler SA. 2020. Reactive oxygen species as mediators of gametophyte development and double fertilization in flowering plants. Frontiers in Plant Science 11:1199

doi: 10.3389/fpls.2020.01199
[16]

Scandola S, Samuel MA. 2019. A flower-specific phospholipase D is a stigmatic compatibility factor targeted by the self-incompatibility response in Brassica napus. Current Biology 29:506−512.e4

doi: 10.1016/j.cub.2018.12.037
[17]

Samuel MA, Chong YT, Haasen KE, Aldea-Brydges MG, Stone SL, et al. 2009. Cellular pathways regulating responses to compatible and self-incompatible pollen in Brassica and Arabidopsis stigmas Intersect at Exo70A1, a putative component of the exocyst complex. The Plant Cell 21:2655−71

doi: 10.1105/tpc.109.069740
[18]

Sankaranarayanan S, Jamshed M, Kumar A, Skori L, Scandola S, et al. 2017. Glyoxalase goes green: the expanding roles of glyoxalase in plants. International Journal of Molecular Sciences 18:898

doi: 10.3390/ijms18040898
[19]

Rejón JD, Delalande F, Schaeffer-Reiss C, Carapito C, Zienkiewicz K, et al. 2013. Proteomics profiling reveals novel proteins and functions of the plant stigma exudate. Journal of Experimental Botany 64:5695−705

doi: 10.1093/jxb/ert345
[20]

Nazemof N, Couroux P, Rampitsch C, Xing T, Robert LS. 2014. Proteomic profiling reveals insights into Triticeae stigma development and function. Journal of Experimental Botany 65:6069−80

doi: 10.1093/jxb/eru350
[21]

Qin H, Li H, Abhinandan K, Xun B, Yao K, et al. 2022. Fatty acid biosynthesis pathways are downregulated during stigma development and are critical during self-incompatible responses in ornamental kale. International Journal of Molecular Sciences 23:13102

doi: 10.3390/ijms232113102
[22]

Chen X, Su W, Zhang H, Zhan Y, Zeng F. 2020. Fraxinus mandshurica 4-coumarate-CoA ligase 2 enhances drought and osmotic stress tolerance of tobacco by increasing coniferyl alcohol content. Plant Physiology and Biochemistry 155:697−708

doi: 10.1016/j.plaphy.2020.08.031
[23]

Hu LJ, Uchiyama K, Shen HL, Saito Y, Tsuda Y, et al. 2008. Nuclear DNA microsatellites reveal genetic variation but a lack of phylogeographical structure in an endangered species, Fraxinus mandshurica, across North-east China. Annals of Botany 102:195−205

doi: 10.1093/aob/mcn074
[24]

Li B, Dewey CN. 2011. RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinformatics 12:323

doi: 10.1186/1471-2105-12-323
[25]

Wang L, Feng Z, Wang X, Wang X, Zhang X. 2010. DEGseq: an R package for identifying differentially expressed genes from RNA-seq data. Bioinformatics 26:136−38

doi: 10.1093/bioinformatics/btp612
[26]

Quiapim AC, Brito MS, Bernardes LAS, daSilva I, Malavazi I, et al. 2009. Analysis of the Nicotiana tabacum stigma/style transcriptome reveals gene expression differences between wet and dry stigma species. Plant Physiology 149:1211−30

doi: 10.1104/pp.108.131573
[27]

Hu J, Liu Y, Tang X, Rao H, Ren C, et al. 2020. Transcriptome profiling of the flowering transition in saffron (Crocus sativus L.). Scientific Reports 10:9680

doi: 10.1038/s41598-020-66675-6
[28]

Zhu Z, Qi F, Yan C, Zhan Y. 2016. Sexually different morphological, physiological and molecular responses of Fraxinus mandshurica flowers to floral development and chilling stress. Plant Physiology and Biochemistry 99:97−107

doi: 10.1016/j.plaphy.2015.12.006
[29]

He Y, Song Q, Chen S, Wu Y, Zheng G, et al. 2020. Transcriptome analysis of self- and cross-pollinated pistils revealing candidate unigenes of self-incompatibility in Camellia oleifera. The Journal of Horticultural Science and Biotechnology 95:19−31

doi: 10.1080/14620316.2019.1632749
[30]

Li M, Xu W, Yang W, Kong Z, Xue Y. 2007. Genome-wide gene expression profiling reveals conserved and novel molecular functions of the stigma in rice. Plant Physiology 144:1797−812

doi: 10.1104/pp.107.101600
[31]

Waszczak C, Carmody M, Kangasjärvi J. 2018. Reactive oxygen species in plant signaling. Annual Review of Plant Biology 69:209−36

doi: 10.1146/annurev-arplant-042817-040322
[32]

Mittler R. 2017. ROS are good. Trends in Plant Science 22:11−19

doi: 10.1016/j.tplants.2016.08.002
[33]

Sies H, Jones DP. 2020. Reactive oxygen species (ROS) as pleiotropic physiological signalling agents. Nature Reviews Molecular Cell Biology 21:363−83

doi: 10.1038/s41580-020-0230-3
[34]

Kurusu T, Kuchitsu K, Tada Y. 2015. Plant signaling networks involving Ca2+ and Rboh/Nox-mediated ROS production under salinity stress. Frontiers in Plant Science 6:427

doi: 10.3389/fpls.2015.00427
[35]

Kobayashi M, Ohura I, Kawakita K, Yokota N, Fujiwara M, et al. 2007. Calcium-dependent protein kinases regulate the production of reactive oxygen species by potato NADPH oxidase. The Plant Cell 19:1065−80

doi: 10.1105/tpc.106.048884
[36]

Yergaliyev TM, Nurbekova Z, Mukiyanova G, Akbassova A, Sutula M, et al. 2016. The involvement of ROS producing aldehyde oxidase in plant response to Tombusvirus infection. Plant Physiology and Biochemistry 109:36−44

doi: 10.1016/j.plaphy.2016.09.001
[37]

Zarepour M, Simon K, Wilch M, Nieländer U, Koshiba T, et al. 2012. Identification of superoxide production by Arabidopsis thaliana aldehyde oxidases AAO1 and AAO3. Plant Molecular Biology 80:659−71

doi: 10.1007/s11103-012-9975-1
[38]

Benkő P, Gémes K, Fehér A. 2022. Polyamine oxidase-generated reactive oxygen species in plant development and adaptation: the polyamine oxidase-NADPH oxidase nexus. Antioxidants 11:2488

doi: 10.3390/antiox11122488
[39]

Gémes K, Kim YJ, Park KY, Moschou PN, Andronis E, et al. 2016. An NADPH-oxidase/polyamine oxidase feedback loop controls oxidative burst under salinity. Plant Physiology 172:1418−31

doi: 10.1104/pp.16.01118
[40]

Arent S, Pye VE, Henriksen A. 2008. Structure and function of plant acyl-CoA oxidases. Plant Physiology and Biochemistry 46:292−301

doi: 10.1016/j.plaphy.2007.12.014
[41]

Corpas FJ, Gupta DK, Palma JM. 2015. Production sites of reactive oxygen species (ROS) in organelles from plant cells. In Reactive Oxygen Species and Oxidative Damage in Plants Under Stress, eds Gupta D, Palma J, Corpas F. Cham: Springer. pp. 1–22. https://doi.org/10.1007/978-3-319-20421-5_1

[42]

Mittler R, Zandalinas SI, Fichman Y, Van Breusegem F. 2022. Reactive oxygen species signalling in plant stress responses. Nature Reviews Molecular Cell Biology 23:663−79

doi: 10.1038/s41580-022-00499-2
[43]

Alscher RG, Erturk N, Heath LS. 2002. Role of superoxide dismutases (SODs) in controlling oxidative stress in plants. Journal of Experimental Botany 53:1331−41

doi: 10.1093/jexbot/53.372.1331
[44]

Sudan J, Negi B, Arora S. 2015. Oxidative stress induced expression of monodehydroascorbate reductase gene in Eleusine coracana. Physiology and Molecular Biology of Plants 21:551−58

doi: 10.1007/s12298-015-0327-x
[45]

Thompson EP, Wilkins C, Demidchik V, Davies JM, Glover BJ. 2010. An Arabidopsis flavonoid transporter is required for anther dehiscence and pollen development. Journal of Experimental Botany 61:439−51

doi: 10.1093/jxb/erp312
[46]

Koes RE, Van Blokland R, Quattrocchio F, Van Tunen AJ, Mol JNM. 1990. Chalcone synthase promoters in Petunia are active in pigmented and unpigmented cell types. The Plant Cell 2:379−92

doi: 10.1105/tpc.2.5.379
[47]

Sharma B. 2019. An analyses of flavonoids present in the inflorescence of sunflower. Brazilian Journal of Botany 42:421−29

doi: 10.1007/s40415-019-00552-z
[48]

Koes RE, Quattrocchio F, Mol JNM. 1994. The flavonoid biosynthetic pathway in plants: function and evolution. BioEssays 16:123−32

doi: 10.1002/bies.950160209
[49]

Lan X, Yang J, Abhinandan K, Nie Y, Li X, et al. 2017. Flavonoids and ROS play opposing roles in mediating pollination in ornamental kale (Brassica oleracea var. acephala). Molecular Plant 10:1361−64

doi: 10.1016/j.molp.2017.08.002
[50]

Sharma B, Kalra G, Verma H. 2022. Evaluation of stigma receptivity and its properties in Helianthus annuus L. (Asteraceae). Vegetos 36:474−83

doi: 10.1007/s42535-022-00419-x
[51]

Nishihara M, Nakatsuka T. 2011. Genetic engineering of flavonoid pigments to modify flower color in floricultural plants. Biotechnology Letters 33:433−41

doi: 10.1007/s10529-010-0461-z
[52]

Nakamura N, Fukuchi-Mizutani M, Miyazaki K, Suzuki K, Tanaka Y. 2006. RNAi suppression of the anthocyanidin synthase gene in Torenia hybrida yields white flowers with higher frequency and better stability than antisense and sense suppression. Plant Biotechnology 23:13−17

doi: 10.5511/plantbiotechnology.23.13
[53]

Muhlemann JK, Younts TLB, Muday GK. 2018. Flavonols control pollen tube growth and integrity by regulating ROS homeostasis during high-temperature stress. Proceedings of the National Academy of Sciences of the United States of America 115:E11188−E11197

doi: 10.1073/pnas.181149211
[54]

Pollak PE, Vogt T, Mo Y, Taylor LP. 1993. Chalcone synthase and flavonol accumulation in stigmas and anthers of Petunia hybrida. Plant Physiology 102:925−32

doi: 10.1104/pp.102.3.925
[55]

Falcone Ferreyra ML, Rius SP, Casati P. 2012. Flavonoids: biosynthesis, biological functions, and biotechnological applications. Frontiers in Plant Science 3:222

doi: 10.3389/fpls.2012.00222
[56]

Xie H, Wan Z, Li S, Zhang Y. 2014. Spatiotemporal production of reactive oxygen species by NADPH oxidase is critical for tapetal programmed cell death and pollen development in Arabidopsis. The Plant Cell 26:2007−23

doi: 10.1105/tpc.114.125427
[57]

Duan Q, Kita D, Johnson EA, Aggarwal M, Gates L, et al. 2014. Reactive oxygen species mediate pollen tube rupture to release sperm for fertilization in Arabidopsis. Nature Communications 5:3129

doi: 10.1038/ncomms4129
[58]

Franklin-Tong N, Bosch M. 2021. Plant biology: stigmatic ROS decide whether pollen is accepted or rejected. Current Biology 31:R904−R906

doi: 10.1016/j.cub.2021.05.034
[59]

Huang J, Yang L, Yang L, Wu X, Cui X, et al. 2023. Stigma receptors control intraspecies and interspecies barriers in Brassicaceae. Nature 614:303−08

doi: 10.1038/s41586-022-05640-x
[60]

Zhang L, Huang J, Su S, Wei X, Yang L, et al. 2021. FERONIA receptor kinase-regulated reactive oxygen species mediate self-incompatibility in Brassica rapa. Current Biology 31:3004−3016.e4

doi: 10.1016/j.cub.2021.04.060
[61]

Zafra A, Rejón JD, Hiscock SJ, de Dios Alché J. 2016. Patterns of ROS accumulation in the stigmas of angiosperms and visions into their multi-functionality in plant reproduction. Frontiers in Plant Science 7:1112

doi: 10.3389/fpls.2016.01112
[62]

Breygina M, Schekaleva O, Klimenko E, Luneva O. 2022. The balance between different ROS on tobacco stigma during flowering and its role in pollen germination. Plants 11:993

doi: 10.3390/plants11070993
[63]

Zhou L, Qu L, Dresselhaus T. 2021. Stigmatic ROS: regulator of compatible pollen tube perception? Trends in Plant Science 26:993−95

doi: 10.1016/j.tplants.2021.06.013
[64]

Kiyono H, Katano K, Suzuki N. 2021. Links between regulatory systems of ROS and carbohydrates in reproductive development. Plants 10:1652

doi: 10.3390/plants10081652
[65]

McInnis SM, Desikan R, Hancock JT, Hiscock SJ. 2006. Production of reactive oxygen species and reactive nitrogen species by angiosperm stigmas and pollen: potential signalling crosstalk? New Phytologist 172:221−28

doi: 10.1111/j.1469-8137.2006.01875.x
[66]

Zhang M, Zhang X, Gao X. 2020. ROS in the male–female interactions during pollination: function and regulation. Frontiers in Plant Science 11:177

doi: 10.3389/fpls.2020.00177
[67]

Zafra A, Rodríguez-García MI, de Dios Alché J. 2010. Cellular localization of ROS and NO in olive reproductive tissues during flower development. BMC Plant Biology 10:36

doi: 10.1186/1471-2229-10-36
[68]

Šírová J, Sedlářová M, Piterková J, Luhová L, Petřivalský M. 2011. The role of nitric oxide in the germination of plant seeds and pollen. Plant Science 181:560−72

doi: 10.1016/j.plantsci.2011.03.014
[69]

Cárdenas L, McKenna ST, Kunkel JG, Hepler PK. 2006. NAD(P)H oscillates in pollen tubes and is correlated with tip growth. Plant Physiology 142:1460−68

doi: 10.1104/pp.106.087882