[1]
|
Fattorini R, Glover BJ. 2020. Molecular mechanisms of pollination biology. Annual Review of Plant Biology 71:487−515 doi: 10.1146/annurev-arplant-081519-040003
CrossRef Google Scholar
|
[2]
|
Broz AK, Bedinger PA. 2021. Pollen-pistil interactions as reproductive barriers. Annual Review of Plant Biology 72:615−39 doi: 10.1146/annurev-arplant-080620-102159
CrossRef Google Scholar
|
[3]
|
Baack E, Melo MC, Rieseberg LH, Ortiz-Barrientos D. 2015. The origins of reproductive isolation in plants. New Phytologist 207:968−84 doi: 10.1111/nph.13424
CrossRef Google Scholar
|
[4]
|
Heslop-Harrison Y, Shivanna KR. 1977. The receptive surface of the angiosperm stigma. Annals of Botany 41:1233−58 doi: 10.1093/oxfordjournals.aob.a085414
CrossRef Google Scholar
|
[5]
|
Dumas C. 1977. Lipochemistry of the progamic stage of a self-incompatible species: neutral lipids and fatty acids of the secretory stigma during its glandular activity, and of the solid style, the ovary and the anther in Forsythia intermedia Zab. (Heterostylic species). Planta 137:177−84 doi: 10.1007/BF00387556
CrossRef Google Scholar
|
[6]
|
Wolters-Arts M, Lush WM, Mariani C. 1998. Lipids are required for directional pollen-tube growth. Nature 392:818−21 doi: 10.1038/33929
CrossRef Google Scholar
|
[7]
|
Sanchez AM, Bosch M, Bots M, Nieuwland J, Feron R, et al. 2004. Pistil factors controlling pollination. The Plant Cell 16:S98−S106 doi: 10.1105/tpc.017806
CrossRef Google Scholar
|
[8]
|
Wolters-Arts M, Van Der Weerd L, Van Aelst AC, Van Der Weerd J, Van As H, et al. 2002. Water-conducting properties of lipids during pollen hydration. Plant, Cell & Environment 25:513−19 doi: 10.1046/j.1365-3040.2002.00827.x
CrossRef Google Scholar
|
[9]
|
Heslop-Harrison Y. 2000. Control gates and micro-ecology: the pollen-stigma interaction in perspective. Annals of Botany 85:5−13 doi: 10.1006/anbo.1999.1063
CrossRef Google Scholar
|
[10]
|
Edlund AF, Swanson R, Preuss D. 2004. Pollen and stigma structure and function: the role of diversity in pollination. The Plant Cell 16:S84−S97 doi: 10.1105/tpc.015800
CrossRef Google Scholar
|
[11]
|
Liu C, Shen L, Xiao Y, Vyshedsky D, Peng C, et al. 2021. Pollen PCP-B peptides unlock a stigma peptide–receptor kinase gating mechanism for pollination. Science 372:171−75 doi: 10.1126/science.abc6107
CrossRef Google Scholar
|
[12]
|
Doucet J, Lee HK, Goring DR. 2016. Pollen acceptance or rejection: a tale of two pathways. Trends in Plant Science 21:1058−67 doi: 10.1016/j.tplants.2016.09.004
CrossRef Google Scholar
|
[13]
|
Iwano M, Igarashi M, Tarutani Y, Kaothien-Nakayama P, Nakayama H, et al. 2014. A pollen coat–inducible autoinhibited Ca2+-ATPase expressed in stigmatic papilla cells is required for compatible pollination in the Brassicaceae. The Plant Cell 26:636−49 doi: 10.1105/tpc.113.121350
CrossRef Google Scholar
|
[14]
|
Iwano M, Ito K, Fujii S, Kakita M, Asano-Shimosato H, et al. 2015. Calcium signalling mediates self-incompatibility response in the Brassicaceae. Nature Plants 1:15128 doi: 10.1038/nplants.2015.128
CrossRef Google Scholar
|
[15]
|
Sankaranarayanan S, Ju Y, Kessler SA. 2020. Reactive oxygen species as mediators of gametophyte development and double fertilization in flowering plants. Frontiers in Plant Science 11:1199 doi: 10.3389/fpls.2020.01199
CrossRef Google Scholar
|
[16]
|
Scandola S, Samuel MA. 2019. A flower-specific phospholipase D is a stigmatic compatibility factor targeted by the self-incompatibility response in Brassica napus. Current Biology 29:506−512.e4 doi: 10.1016/j.cub.2018.12.037
CrossRef Google Scholar
|
[17]
|
Samuel MA, Chong YT, Haasen KE, Aldea-Brydges MG, Stone SL, et al. 2009. Cellular pathways regulating responses to compatible and self-incompatible pollen in Brassica and Arabidopsis stigmas Intersect at Exo70A1, a putative component of the exocyst complex. The Plant Cell 21:2655−71 doi: 10.1105/tpc.109.069740
CrossRef Google Scholar
|
[18]
|
Sankaranarayanan S, Jamshed M, Kumar A, Skori L, Scandola S, et al. 2017. Glyoxalase goes green: the expanding roles of glyoxalase in plants. International Journal of Molecular Sciences 18:898 doi: 10.3390/ijms18040898
CrossRef Google Scholar
|
[19]
|
Rejón JD, Delalande F, Schaeffer-Reiss C, Carapito C, Zienkiewicz K, et al. 2013. Proteomics profiling reveals novel proteins and functions of the plant stigma exudate. Journal of Experimental Botany 64:5695−705 doi: 10.1093/jxb/ert345
CrossRef Google Scholar
|
[20]
|
Nazemof N, Couroux P, Rampitsch C, Xing T, Robert LS. 2014. Proteomic profiling reveals insights into Triticeae stigma development and function. Journal of Experimental Botany 65:6069−80 doi: 10.1093/jxb/eru350
CrossRef Google Scholar
|
[21]
|
Qin H, Li H, Abhinandan K, Xun B, Yao K, et al. 2022. Fatty acid biosynthesis pathways are downregulated during stigma development and are critical during self-incompatible responses in ornamental kale. International Journal of Molecular Sciences 23:13102 doi: 10.3390/ijms232113102
CrossRef Google Scholar
|
[22]
|
Chen X, Su W, Zhang H, Zhan Y, Zeng F. 2020. Fraxinus mandshurica 4-coumarate-CoA ligase 2 enhances drought and osmotic stress tolerance of tobacco by increasing coniferyl alcohol content. Plant Physiology and Biochemistry 155:697−708 doi: 10.1016/j.plaphy.2020.08.031
CrossRef Google Scholar
|
[23]
|
Hu LJ, Uchiyama K, Shen HL, Saito Y, Tsuda Y, et al. 2008. Nuclear DNA microsatellites reveal genetic variation but a lack of phylogeographical structure in an endangered species, Fraxinus mandshurica, across North-east China. Annals of Botany 102:195−205 doi: 10.1093/aob/mcn074
CrossRef Google Scholar
|
[24]
|
Li B, Dewey CN. 2011. RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinformatics 12:323 doi: 10.1186/1471-2105-12-323
CrossRef Google Scholar
|
[25]
|
Wang L, Feng Z, Wang X, Wang X, Zhang X. 2010. DEGseq: an R package for identifying differentially expressed genes from RNA-seq data. Bioinformatics 26:136−38 doi: 10.1093/bioinformatics/btp612
CrossRef Google Scholar
|
[26]
|
Quiapim AC, Brito MS, Bernardes LAS, daSilva I, Malavazi I, et al. 2009. Analysis of the Nicotiana tabacum stigma/style transcriptome reveals gene expression differences between wet and dry stigma species. Plant Physiology 149:1211−30 doi: 10.1104/pp.108.131573
CrossRef Google Scholar
|
[27]
|
Hu J, Liu Y, Tang X, Rao H, Ren C, et al. 2020. Transcriptome profiling of the flowering transition in saffron (Crocus sativus L.). Scientific Reports 10:9680 doi: 10.1038/s41598-020-66675-6
CrossRef Google Scholar
|
[28]
|
Zhu Z, Qi F, Yan C, Zhan Y. 2016. Sexually different morphological, physiological and molecular responses of Fraxinus mandshurica flowers to floral development and chilling stress. Plant Physiology and Biochemistry 99:97−107 doi: 10.1016/j.plaphy.2015.12.006
CrossRef Google Scholar
|
[29]
|
He Y, Song Q, Chen S, Wu Y, Zheng G, et al. 2020. Transcriptome analysis of self- and cross-pollinated pistils revealing candidate unigenes of self-incompatibility in Camellia oleifera. The Journal of Horticultural Science and Biotechnology 95:19−31 doi: 10.1080/14620316.2019.1632749
CrossRef Google Scholar
|
[30]
|
Li M, Xu W, Yang W, Kong Z, Xue Y. 2007. Genome-wide gene expression profiling reveals conserved and novel molecular functions of the stigma in rice. Plant Physiology 144:1797−812 doi: 10.1104/pp.107.101600
CrossRef Google Scholar
|
[31]
|
Waszczak C, Carmody M, Kangasjärvi J. 2018. Reactive oxygen species in plant signaling. Annual Review of Plant Biology 69:209−36 doi: 10.1146/annurev-arplant-042817-040322
CrossRef Google Scholar
|
[32]
|
Mittler R. 2017. ROS are good. Trends in Plant Science 22:11−19 doi: 10.1016/j.tplants.2016.08.002
CrossRef Google Scholar
|
[33]
|
Sies H, Jones DP. 2020. Reactive oxygen species (ROS) as pleiotropic physiological signalling agents. Nature Reviews Molecular Cell Biology 21:363−83 doi: 10.1038/s41580-020-0230-3
CrossRef Google Scholar
|
[34]
|
Kurusu T, Kuchitsu K, Tada Y. 2015. Plant signaling networks involving Ca2+ and Rboh/Nox-mediated ROS production under salinity stress. Frontiers in Plant Science 6:427 doi: 10.3389/fpls.2015.00427
CrossRef Google Scholar
|
[35]
|
Kobayashi M, Ohura I, Kawakita K, Yokota N, Fujiwara M, et al. 2007. Calcium-dependent protein kinases regulate the production of reactive oxygen species by potato NADPH oxidase. The Plant Cell 19:1065−80 doi: 10.1105/tpc.106.048884
CrossRef Google Scholar
|
[36]
|
Yergaliyev TM, Nurbekova Z, Mukiyanova G, Akbassova A, Sutula M, et al. 2016. The involvement of ROS producing aldehyde oxidase in plant response to Tombusvirus infection. Plant Physiology and Biochemistry 109:36−44 doi: 10.1016/j.plaphy.2016.09.001
CrossRef Google Scholar
|
[37]
|
Zarepour M, Simon K, Wilch M, Nieländer U, Koshiba T, et al. 2012. Identification of superoxide production by Arabidopsis thaliana aldehyde oxidases AAO1 and AAO3. Plant Molecular Biology 80:659−71 doi: 10.1007/s11103-012-9975-1
CrossRef Google Scholar
|
[38]
|
Benkő P, Gémes K, Fehér A. 2022. Polyamine oxidase-generated reactive oxygen species in plant development and adaptation: the polyamine oxidase-NADPH oxidase nexus. Antioxidants 11:2488 doi: 10.3390/antiox11122488
CrossRef Google Scholar
|
[39]
|
Gémes K, Kim YJ, Park KY, Moschou PN, Andronis E, et al. 2016. An NADPH-oxidase/polyamine oxidase feedback loop controls oxidative burst under salinity. Plant Physiology 172:1418−31 doi: 10.1104/pp.16.01118
CrossRef Google Scholar
|
[40]
|
Arent S, Pye VE, Henriksen A. 2008. Structure and function of plant acyl-CoA oxidases. Plant Physiology and Biochemistry 46:292−301 doi: 10.1016/j.plaphy.2007.12.014
CrossRef Google Scholar
|
[41]
|
Corpas FJ, Gupta DK, Palma JM. 2015. Production sites of reactive oxygen species (ROS) in organelles from plant cells. In Reactive Oxygen Species and Oxidative Damage in Plants Under Stress, eds Gupta D, Palma J, Corpas F. Cham: Springer. pp. 1–22. https://doi.org/10.1007/978-3-319-20421-5_1
|
[42]
|
Mittler R, Zandalinas SI, Fichman Y, Van Breusegem F. 2022. Reactive oxygen species signalling in plant stress responses. Nature Reviews Molecular Cell Biology 23:663−79 doi: 10.1038/s41580-022-00499-2
CrossRef Google Scholar
|
[43]
|
Alscher RG, Erturk N, Heath LS. 2002. Role of superoxide dismutases (SODs) in controlling oxidative stress in plants. Journal of Experimental Botany 53:1331−41 doi: 10.1093/jexbot/53.372.1331
CrossRef Google Scholar
|
[44]
|
Sudan J, Negi B, Arora S. 2015. Oxidative stress induced expression of monodehydroascorbate reductase gene in Eleusine coracana. Physiology and Molecular Biology of Plants 21:551−58 doi: 10.1007/s12298-015-0327-x
CrossRef Google Scholar
|
[45]
|
Thompson EP, Wilkins C, Demidchik V, Davies JM, Glover BJ. 2010. An Arabidopsis flavonoid transporter is required for anther dehiscence and pollen development. Journal of Experimental Botany 61:439−51 doi: 10.1093/jxb/erp312
CrossRef Google Scholar
|
[46]
|
Koes RE, Van Blokland R, Quattrocchio F, Van Tunen AJ, Mol JNM. 1990. Chalcone synthase promoters in Petunia are active in pigmented and unpigmented cell types. The Plant Cell 2:379−92 doi: 10.1105/tpc.2.5.379
CrossRef Google Scholar
|
[47]
|
Sharma B. 2019. An analyses of flavonoids present in the inflorescence of sunflower. Brazilian Journal of Botany 42:421−29 doi: 10.1007/s40415-019-00552-z
CrossRef Google Scholar
|
[48]
|
Koes RE, Quattrocchio F, Mol JNM. 1994. The flavonoid biosynthetic pathway in plants: function and evolution. BioEssays 16:123−32 doi: 10.1002/bies.950160209
CrossRef Google Scholar
|
[49]
|
Lan X, Yang J, Abhinandan K, Nie Y, Li X, et al. 2017. Flavonoids and ROS play opposing roles in mediating pollination in ornamental kale (Brassica oleracea var. acephala). Molecular Plant 10:1361−64 doi: 10.1016/j.molp.2017.08.002
CrossRef Google Scholar
|
[50]
|
Sharma B, Kalra G, Verma H. 2022. Evaluation of stigma receptivity and its properties in Helianthus annuus L. (Asteraceae). Vegetos 36:474−83 doi: 10.1007/s42535-022-00419-x
CrossRef Google Scholar
|
[51]
|
Nishihara M, Nakatsuka T. 2011. Genetic engineering of flavonoid pigments to modify flower color in floricultural plants. Biotechnology Letters 33:433−41 doi: 10.1007/s10529-010-0461-z
CrossRef Google Scholar
|
[52]
|
Nakamura N, Fukuchi-Mizutani M, Miyazaki K, Suzuki K, Tanaka Y. 2006. RNAi suppression of the anthocyanidin synthase gene in Torenia hybrida yields white flowers with higher frequency and better stability than antisense and sense suppression. Plant Biotechnology 23:13−17 doi: 10.5511/plantbiotechnology.23.13
CrossRef Google Scholar
|
[53]
|
Muhlemann JK, Younts TLB, Muday GK. 2018. Flavonols control pollen tube growth and integrity by regulating ROS homeostasis during high-temperature stress. Proceedings of the National Academy of Sciences of the United States of America 115:E11188−E11197 doi: 10.1073/pnas.181149211
CrossRef Google Scholar
|
[54]
|
Pollak PE, Vogt T, Mo Y, Taylor LP. 1993. Chalcone synthase and flavonol accumulation in stigmas and anthers of Petunia hybrida. Plant Physiology 102:925−32 doi: 10.1104/pp.102.3.925
CrossRef Google Scholar
|
[55]
|
Falcone Ferreyra ML, Rius SP, Casati P. 2012. Flavonoids: biosynthesis, biological functions, and biotechnological applications. Frontiers in Plant Science 3:222 doi: 10.3389/fpls.2012.00222
CrossRef Google Scholar
|
[56]
|
Xie H, Wan Z, Li S, Zhang Y. 2014. Spatiotemporal production of reactive oxygen species by NADPH oxidase is critical for tapetal programmed cell death and pollen development in Arabidopsis. The Plant Cell 26:2007−23 doi: 10.1105/tpc.114.125427
CrossRef Google Scholar
|
[57]
|
Duan Q, Kita D, Johnson EA, Aggarwal M, Gates L, et al. 2014. Reactive oxygen species mediate pollen tube rupture to release sperm for fertilization in Arabidopsis. Nature Communications 5:3129 doi: 10.1038/ncomms4129
CrossRef Google Scholar
|
[58]
|
Franklin-Tong N, Bosch M. 2021. Plant biology: stigmatic ROS decide whether pollen is accepted or rejected. Current Biology 31:R904−R906 doi: 10.1016/j.cub.2021.05.034
CrossRef Google Scholar
|
[59]
|
Huang J, Yang L, Yang L, Wu X, Cui X, et al. 2023. Stigma receptors control intraspecies and interspecies barriers in Brassicaceae. Nature 614:303−08 doi: 10.1038/s41586-022-05640-x
CrossRef Google Scholar
|
[60]
|
Zhang L, Huang J, Su S, Wei X, Yang L, et al. 2021. FERONIA receptor kinase-regulated reactive oxygen species mediate self-incompatibility in Brassica rapa. Current Biology 31:3004−3016.e4 doi: 10.1016/j.cub.2021.04.060
CrossRef Google Scholar
|
[61]
|
Zafra A, Rejón JD, Hiscock SJ, de Dios Alché J. 2016. Patterns of ROS accumulation in the stigmas of angiosperms and visions into their multi-functionality in plant reproduction. Frontiers in Plant Science 7:1112 doi: 10.3389/fpls.2016.01112
CrossRef Google Scholar
|
[62]
|
Breygina M, Schekaleva O, Klimenko E, Luneva O. 2022. The balance between different ROS on tobacco stigma during flowering and its role in pollen germination. Plants 11:993 doi: 10.3390/plants11070993
CrossRef Google Scholar
|
[63]
|
Zhou L, Qu L, Dresselhaus T. 2021. Stigmatic ROS: regulator of compatible pollen tube perception? Trends in Plant Science 26:993−95 doi: 10.1016/j.tplants.2021.06.013
CrossRef Google Scholar
|
[64]
|
Kiyono H, Katano K, Suzuki N. 2021. Links between regulatory systems of ROS and carbohydrates in reproductive development. Plants 10:1652 doi: 10.3390/plants10081652
CrossRef Google Scholar
|
[65]
|
McInnis SM, Desikan R, Hancock JT, Hiscock SJ. 2006. Production of reactive oxygen species and reactive nitrogen species by angiosperm stigmas and pollen: potential signalling crosstalk? New Phytologist 172:221−28 doi: 10.1111/j.1469-8137.2006.01875.x
CrossRef Google Scholar
|
[66]
|
Zhang M, Zhang X, Gao X. 2020. ROS in the male–female interactions during pollination: function and regulation. Frontiers in Plant Science 11:177 doi: 10.3389/fpls.2020.00177
CrossRef Google Scholar
|
[67]
|
Zafra A, Rodríguez-García MI, de Dios Alché J. 2010. Cellular localization of ROS and NO in olive reproductive tissues during flower development. BMC Plant Biology 10:36 doi: 10.1186/1471-2229-10-36
CrossRef Google Scholar
|
[68]
|
Šírová J, Sedlářová M, Piterková J, Luhová L, Petřivalský M. 2011. The role of nitric oxide in the germination of plant seeds and pollen. Plant Science 181:560−72 doi: 10.1016/j.plantsci.2011.03.014
CrossRef Google Scholar
|
[69]
|
Cárdenas L, McKenna ST, Kunkel JG, Hepler PK. 2006. NAD(P)H oscillates in pollen tubes and is correlated with tip growth. Plant Physiology 142:1460−68 doi: 10.1104/pp.106.087882
CrossRef Google Scholar
|