[1]

Mimura M, Yahara T, Faith DP, Vázquez-Domínguez E, Colautti RI, et al. 2017. Understanding and monitoring the consequences of human impacts on intraspecific variation. Evolutionary Application 10:121−39

doi: 10.1111/eva.12436
[2]

Urban MC, Bocedi G, Hendry AP, Mihoub JB, Pe'er G, et al. 2016. Improving the forecast for biodiversity under climate change. Science 353:aad8466

doi: 10.1126/science.aad8466
[3]

Des Roches S, Post DM, Turley NE, Bailey JK, Hendry AP, et al. 2018. The ecological importance of intraspecific variation. Nature Ecology & Evolution 2:57−64

doi: 10.1038/s41559-017-0402-5
[4]

Wiens JJ, Ackerly DD, Allen AP, Anacker BL, Buckley LB, et al. 2010. Niche conservatism as an emerging principle in ecology and conservation biology. Ecology Letters 13:1310−24

doi: 10.1111/j.1461-0248.2010.01515.x
[5]

Wang F, Chen B, Lin X, Zhang H. 2020. Solar-induced chlorophyll fluorescence as an indicator for determining the end date of the vegetation growing season. Ecological Indicators 109:105755

doi: 10.1016/j.ecolind.2019.105755
[6]

Jung J, Maeda M, Chang A, Bhandari M, Ashapure A, Landivar-Bowles J. 2021. The potential of remote sensing and artificial intelligence as tools to improve the resilience of agriculture production systems. Current Opinion in Biotechnology 70:15−22

doi: 10.1016/j.copbio.2020.09.003
[7]

Ustin SL, Gamon JA. 2010. Remote sensing of plant functional types. New Phytologist 186:795−816

doi: 10.1111/j.1469-8137.2010.03284.x
[8]

Cavender-Bares J, Meireles JE, Couture JJ, Kaproth MA, Kingdon CC, et al. 2016. Associations of leaf spectra with genetic and phylogenetic variation in oaks: prospects for remote detection of biodiversity. Remote Sensing 8:221

doi: 10.3390/rs8030221
[9]

Schweiger AK, Cavender-Bares J, Townsend PA, Hobbie SE, Madritch MD, et al. 2018. Plant spectral diversity integrates functional and phylogenetic components of biodiversity and predicts ecosystem function. Nature Ecology and Evolution 2:976−82

doi: 10.1038/s41559-018-0551-1
[10]

Rohman A, Nugroho A, Lukitaningsih E, Sudjadi. 2014. Application of vibrational spectroscopy in combination with chemometrics techniques for authentication of herbal medicine. Applied Spectroscopy Reviews 49:603−13

doi: 10.1080/05704928.2014.882347
[11]

Rohman A, Windarsih A, Hossain MA, Johan MR, Ali ME, et al. 2019. Application of near- and mid-infrared spectroscopy combined with chemometrics for discrimination and authentication of herbal products: a review. Journal of Applied Pharmaceut Science 9:137−47

doi: 10.7324/JAPS.2019.90319
[12]

Bush A, Sollmann R, Wilting A, Bohmann K, Cole B, et al. 2017. Connecting Earth observation to high-throughput biodiversity data. Nature Ecology & Evolution 1:0176

doi: 10.1038/s41559-017-0176
[13]

Shi Y, Thomasson JA, Murray SC, Pugh NA, Rooney WL, et al. 2016. Unmanned aerial vehicles for high-throughput phenotyping and agronomic research. PLoS One 11:e0159781

doi: 10.1371/journal.pone.0159781
[14]

Bendig J, Bolten A, Bennertz S, Broscheit J, Eichfuss S, et al. 2014. Estimation biomass of barley using crop surface models (CMSs) derived from UAV-based RGB imaging. Remote Sensing 6:10395−412

doi: 10.3390/rs61110395
[15]

Zhang X, Huang C, Wu D, Qiao F, Li W, et al. 2017. High-throughput phenotyping and QTL mapping reveals the genetic architecture of maize plant growth. Plant Physiology 173:1554−64

doi: 10.1104/pp.16.01516
[16]

Ward B, Brien C, Oakey H, Pearson A, Negrão S, et al. 2019. High-throughput 3D modelling to dissect the genetic control of leaf elongation in barley (Hordeum vulgare). The Plant Journal 98:555−70

doi: 10.1111/tpj.14225
[17]

Lyra DH, Virlet N, Sadeghi-Tehran P, Hassall KL, Wingen LU, et al. 2020. Functional QTL mapping and genomic prediction of canopy height in wheat measured using a robotic field phenotyping platform. Journal of Experimental Botany 71:1885−98

doi: 10.1093/jxb/erz545
[18]

Walter A, Liebisch F, Hund A. 2015. Plant phenotyping: from bean weighing to image analysis. Plant Methods 11:14

doi: 10.1186/s13007-015-0056-8
[19]

Del Pozo S, Rodríguez-Gonzálvez P, Hernández-López D, Felipe-García B. 2014. Vicarious radiometric calibration of a multispectral camera on board an unmanned aerial system. Remote Sensing 6:1918−37

doi: 10.3390/rs6031918
[20]

Virlet N, Sabermanesh K, Sadeghi-Tehran P, Hawkesford MJ. 2017. Field Scanalyzer: an automated robotic field phenotyping platform for detailed crop monitoring. Functional Plant Biology 44:143−53

doi: 10.1071/FP16163
[21]

Gutiérrez-Rodríguez J, Gonçalves J, Civantos E, Martínez-Solano I. 2017. Comparative landscape genetics of pond-breeding amphibians in mediterranean temporal wetlands: the positive role of structural heterogeneity in promoting gene flow. Molecular Ecology 26:5407−20

doi: 10.1111/mec.14272
[22]

Madritch MD, Kingdon CC, Singh A, Mock KE, Lindroth RL, et al. 2014. Imaging spectroscopy links aspen genotype with below-ground processes at landscape scales. Philosophical Transactions of the Royal Society B 369:20130194

doi: 10.1098/rstb.2013.0194
[23]

Czyż EA, Guillén Escribà C, Wulf H, Tedder A, Schuman MC, et al. 2020. Intraspecific genetic variation of a Fagus sylvatica population in a temperate forest derived from airborne imaging spectroscopy time series. Ecology and Evolution 10:7419−30

doi: 10.1002/ece3.6469
[24]

Rojas-Rioseco M, del Castillo RP, González-Campos J, Ipinza R, Sanhueza MI, et al. 2023. Phylogeographic origin authentication of Araucaria araucana (Mol.) K Koch seedlings through the application of spectroscopy techniques in different infrared ranges and chemometric methods. New Forests 54:467−89

doi: 10.1007/s11056-022-09933-x
[25]

Ryckewaert M, Metz M, Héran D, George P, Grèzes-Besset B, et al. 2021. Massive spectral data analysis for plant breeding using parSketch-PLSDA method: discrimination of sunflower genotypes. Biosystems Engineering 210:69−77

doi: 10.1016/j.biosystemseng.2021.08.005
[26]

Watanabe K, Guo W, Arai K, Takanashi H, Kajiya-Kanegae H, et al. 2017. High-throughput phenotyping of sorghum plant height using an unmanned aerial vehicle and its application to genomic prediction modeling. Frontiers in Plant Science 8:421

doi: 10.3389/fpls.2017.00421
[27]

Wang Z, Chlus A, Geygan R, Ye Z, Zheng T, et al. 2020. Foliar functional traits from imaging spectroscopy across biomes in the eastern North America. New Phytologist 228:494−511

doi: 10.1111/nph.16711
[28]

Anderson SL, Murray SC, Chen Y, Malambo L, Chang A, et al. 2020. Unoccupied aerial system enabled functional modeling of maize height reveals dynamic expression of loci. Plant Direct 4:e00223

doi: 10.1002/pld3.223
[29]

Keller B, Matsubara S, Rascher U, Pieruschka R, Steier A, et al. 2019. Genotype specific photosynthesis x environment interactions captured by automated fluorescence canopy scans over two fluctuating growing seasons. Frontiers in Plant Science 10:1482

doi: 10.3389/fpls.2019.01482
[30]

Wang R, Gamon JA. 2019. Remote sensing of terrestrial plant biodiversity. Remote Sensing of Environment 231:111218

doi: 10.1016/j.rse.2019.111218
[31]

Condorelli GE, Maccaferri M, Newcomb M, Andrade-Sanchez P, White JW, et al. 2019. Comparative aerial and ground based high throughput phenotyping for the genetic dissection of NDVI as a proxy for drought adaptive traits in durum wheat. Front Plant Science 9:893

doi: 10.3389/fpls.2018.00893
[32]

Awika HO, Bedre R, Yeom J, Marconi TG, Enciso J, et al. 2019. Developing growth-associated molecular markers via high-throughput phenotyping in Spinach. The Plant Genome 12:190027

doi: 10.3835/plantgenome2019.03.0027
[33]

Wang Y, Zhao J, Lu W, Deng D. 2017. Gibberellin in plant height control: old player, new story. Plant Cell Reports 36:391−98

doi: 10.1007/s00299-017-2104-5
[34]

Zhang J, Han M, Wang L, Chen M, Chen C, et al. 2023. Study of genetic variation in bermuda grass along longitudinal and latitudinal gradients using spectral reflectance. Remote Sensing 15:896

doi: 10.3390/rs15040896
[35]

Yang W, Guo Z, Huang C, Duan L, Chen G, et al. 2014. Combining high-throughput phenotyping and genome-wide association studies to reveal natural genetic variation in rice. Nature Communication 5:5087

doi: 10.1038/ncomms6087
[36]

Camarretta NA, Harrison P, Lucieer A, Potts BM, Davidson N, et al. 2020. From drones to phenotype: using UAV-LiDAR to detect species and provenance variation in tree productivity and structure. Remote Sensing 12:3184

doi: 10.3390/rs12193184
[37]

Malambo L, Popescu SC, Murray SC, Putman E, Pugh NA, et al. 2018. Multitemporal field-based plant height estimation using 3D point clouds generated from small unmanned aerial systems high-resolution imagery. International Journal of Applied Earth Observation and Geoinformation 64:31−42

doi: 10.1016/j.jag.2017.08.014
[38]

Torabzadeh H, Leiterer R, Hueni A, Schaepman ME, Morsdorf F. 2019. Tree species classification in a temperate mixed forest using a combination of imaging spectroscopy and airborne laser scanning. Agricultural and Forest Meteorology 279:107744

doi: 10.1016/j.agrformet.2019.107744
[39]

Valbuena R, O'Connor B, Zellweger F, Simonson W, Vihervaara P, et al. 2020. Standardizing ecosystem morphological traits from 3D information sources. Trends in Ecology & Evolution 35:656−67

doi: 10.1016/j.tree.2020.03.006
[40]

Fahlgren N, Gehan MA, Baxter I. 2015. Lights, camera, action: high-throughput plant phenotyping is ready for a close-up. Current Opinion in Plant Biology 24:93−99

doi: 10.1016/j.pbi.2015.02.006
[41]

Sirault XRR, James RA, Furbank RT. 2009. A new screening method for osmotic component of salinity tolerance in cereals using infrared thermography. Function Plant Biology 36:970−77

doi: 10.1071/FP09182
[42]

Dornbusch T, Michaud O, Xenarios I, Fankhauser C. 2014. Differentially phased leaf growth and movements in Arabidopsis depend on coordinated circadian and light regulation. The Plant Cell 26:3911−21

doi: 10.1105/tpc.114.129031
[43]

Pugh NA, Horne DW, Murray SC, Carvalho G Jr, Malambo L, et al. 2018. Temporal estimates of crop growth in sorghum and maize breeding enabled by unmanned aerial systems. The Plant Phenome Journal 1:1−10

doi: 10.2135/tppj2017.08.0006
[44]

Anderson SL, Murray SC, Malambo L, Ratcliff C, Popescu S, et al. 2019. Prediction of maize grain yield before maturity using improved temporal height estimates of unmanned aerial systems. The Plant Phenome Journal 2:1−15

doi: 10.2135/tppj2019.02.0004
[45]

Christopher JT, Christopher MJ, Borrell AK, Fletcher S, Chenu K. 2016. Stay-green traits to improve wheat adaptation in well-watered and water-limited environments. Journal of Experimental Botany 67:5159−72

doi: 10.1093/jxb/erw276
[46]

Pan Q, Xu Y, Li K, Peng Y, Zhan W, Li W, et al. 2017. The genetic basis of plant architecture in 10 maize recombinant inbred line populations. Plant Physiology 175:858−73

doi: 10.1104/pp.17.00709
[47]

Peiffer JA, Romay MC, Gore MA, Flint-Garcia SA, Zhang Z, et al. 2014. The genetic architecture of maize height. Genetics 196:1337−56

doi: 10.1534/genetics.113.159152
[48]

Araus JL, Cairns JE. 2014. Field high-throughput phenotyping: the new crop breeding frontier. Trends in Plant Science 19:52−61

doi: 10.1016/j.tplants.2013.09.008
[49]

Duan T, Zheng B, Guo W, Ninomiya S, Guo Y, et al. 2016. Comparison of ground cover estimates from experiment plots in cotton, sorghum and sugarcane based on images and ortho-mosaics captured by UAV. Functional Plant Biology 44:169−83

doi: 10.1071/FP16123
[50]

Shakoor N, Lee S, Mockler TC. 2017. High throughput phenotyping to accelerate crop breeding and monitoring of diseases in the field. Current Opinion in Plant Biology 38:184−92

doi: 10.1016/j.pbi.2017.05.006
[51]

Trapp JJ, Urrea CA, Zhou J, Khot LR, Sankaran S, et al. 2016. Selective phenotyping traits related to multiple stress and drought response in dry bean. Crop Science 56:1460−72

doi: 10.2135/cropsci2015.05.0281
[52]

Shi S, Azam FI, Li H, Chang X, Li B, et al. 2017. Mapping QTL for stay-green and agronomic traits in wheat under diverse water regimes. Euphytica 213:246

doi: 10.1007/s10681-017-2002-5
[53]

Sukumaran S, Dreisigacker S, Lopes M, Chavez P, Reynolds MP. 2015. Genome-wide association study for grain yield and related traits in an elite spring wheat population grown in temperate irrigated environments. Theoretical and Applied Genetics 128:353−63

doi: 10.1007/s00122-014-2435-3
[54]

Schneider FD, Morsdorf F, Schmid B, Petchey OL, Hueni A, et al. 2017. Mapping functional diversity from remotely sensed morphological and physiological forest traits. Nature Communication 8:1441

doi: 10.1038/s41467-017-01530-3
[55]

Liebisch F, Kirchgessner N, Schneider D, Walter A, Hund A. 2015. Remote, aerial phenotyping of maize traits with a mobile multi-sensor approach. Plant Methods 11:9

doi: 10.1186/s13007-015-0048-8
[56]

Zhang L, Niu Y, Zhang H, Han W, Li G, et al. 2019. Maize canopy temperature extracted from UAV thermal and RGB imagery and its application in water stress monitoring. Frontiers in Plant Science 10:1270

doi: 10.3389/fpls.2019.01270
[57]

Beć KB, Grabska J, Siesler HW, Huck CW. 2020. Handheld near-infrared spectrometers: where are we heading? NIR News 31:28−35

doi: 10.1177/0960336020916
[58]

Mishra P, Lohumi S, Ahmad Khan H, Nordon A. 2020. Close-range hyperspectral imaging of whole plants for digital phenotyping: recent applications and illumination correction approaches. Computers and Electronics in Agriculture 178:105780

doi: 10.1016/j.compag.2020.105780
[59]

Langridge P, Reynolds MP. 2015. Genomic tools to assist breeding for drought tolerance. Current Opinion in Biotechnology 32:130−35

doi: 10.1016/j.copbio.2014.11.027
[60]

Maccaferri M, El-Feki W, Nazemi G, Salvi S, Canè MA, et al. 2016. Prioritizing quantitative trait loci for root system architecture in tetraploid wheat. Journal of Experimental Botany 67:1161−78

doi: 10.1093/jxb/erw039
[61]

Mason RE, Addison CK, Babar A, Acuna A, Lozada D, et al. 2018. Diagnostic markers for vernalization and photoperiod loci improve genomic selection for grain yield and spectral reflectance in wheat. Crop Science 58:242−52

doi: 10.2135/cropsci2017.06.0348
[62]

Baret F, Madec S, Irfan K, Lopez J, Comar A, Hemmerlé M, et al. 2018. Leaf-rolling in maize crops: from leaf scoring to canopy-level measurements for phenotyping. Journal of Experimental Botany 69:2705−16

doi: 10.1093/jxb/ery071
[63]

Ramya P, Singh GP, Jain N, Singh PK, Pandey MK, et al. 2016. Effect of recurrent selection on drought tolerance and related morpho-physiological traits in bread wheat. PLoS ONE 11:e0156869

doi: 10.1371/journal.pone.0156869
[64]

Shokat S, Sehgal D, Liu F, Singh S. 2020. GWAS analysis of wheat prebreeding germplasm for terminal drought stress using next generation sequencing technology. Preprints2020020272

doi: 10.20944/preprints202002.0272.v1
[65]

Pinto RS, Lopes MS, Collins NC, Reynolds MP. 2016. Modelling and genetic dissection of staygreen under heat stress. Theoretical and Applied Genetics 129:2055−74

doi: 10.1007/s00122-016-2757-4
[66]

Gao F, Wen W, Liu J, Rasheed A, Yin G, et al. 2015. Genome-wide linkage mapping of QTL for yield components, plant height and yield-related physiological traits in the Chinese Wheat Cross Zhou 8425B/Chinese Spring. Frontiers in Plant Science 6:1099

doi: 10.3389/fpls.2015.01099
[67]

Wang X, Zhang R, Song W, Han L, Liu X, et al. 2019. Dynamic plant height QTL revealed in maize through remote sensing phenotyping using a high throughput unmanned aerial vehicle (UAV). Scientific Reports 9:3458

doi: 10.1038/s41598-018-37186-2
[68]

Edwards EJ, Still CJ. 2008. Climate, phylogeny and the ecological distribution of C4 grasses. Ecology Letters 11:266−76

doi: 10.1111/j.1461-0248.2007.01144.x
[69]

Givnish TJ, Montgomery RA. 2014. Common-garden studies on adaptive radiation of photosynthetic physiology among Hawaiian lobeliads. Proceedings of the Royal Society B 281:e20132944

doi: 10.1098/rspb.2013.2944
[70]

Huang X, Wei X, Sang T, Zhao Q, Feng Q, et al. 2010. Genome-wide association studies of 14 agronomic traits in rice landraces. Nature Genetics 42:961−67

doi: 10.1038/ng.695
[71]

Huang X, Zhao Y, Wei X, Li C, Wang A, et al. 2012. Genome-wide association study of flowering time and grain yield traits in a worldwide collection of rice germplasm. Nature Genetics 44:32−39

doi: 10.1038/ng.1018
[72]

Zhao K, Tung CW, Eizenga GC, Wright MH, Ali ML, et al. 2011. Genome-wide association mapping reveals a rich genetic architecture of complex traits in Oryza sativa. Nature Communications 2:467

doi: 10.1038/ncomms1467
[73]

Huang H, Deng J, Lan Y, Yang A, Deng X, et al. 2018. A fully convolutional network for weed mapping of unmanned aerial vehicle (UAV) imagery. PLoS One 13:e0196302

doi: 10.1371/journal.pone.0196302
[74]

Holman FH, Riche AB, Michalski A, Castle M, Wooster MJ, et al. 2016. High throughput feld phenotyping of wheat plant height and growth rate in feld plot trials using UAV based remote sensing. Remote Sensing 8:1031

doi: 10.3390/rs8121031
[75]

Liang Z, Pandey P, Stoerger V, Xu Y, Qiu Y, et al. 2018. Conventional and hyperspectral time-series imaging of maize lines widely used in field trials. GigaScience 7:gix117

doi: 10.1093/gigascience/gix117
[76]

Tripodi P, Massa D, Venezia A, Cardi T. 2018. Sensing technologies for precision phenotyping in vegetable crops: current status and future challenges. Agronomy 8:57

doi: 10.3390/agronomy8040057
[77]

Barnaby JY, Huggins TD, Lee H, McClung AM, Pinson SRM, et al. 2020. Vis/NIR hyperspectral imaging distinguishes sub-population, production environment, and physicochemical grain properties in rice. Scientific Reports 10:9284

doi: 10.1038/s41598-020-65999-7
[78]

Sun D, Cen H, Weng H, Wan L, Abdalla A, et al. 2019. Using hyperspectral analysis as a potential high throughput phenotyping tool in GWAS for protein content of rice quality. Plant Methods 15:54

doi: 10.1186/s13007-019-0432-x
[79]

Anderson CB. 2018. Biodiversity monitoring, earth observations and the ecology of scale. Ecology Letters 21:1572−85

doi: 10.1111/ele.13106
[80]

Gamon JA, Wang R, Gholizadeh H, Zutta B, Townsend PA, et al. 2020. Consideration of scale in remote sensing of biodiversity. In Remote Sensing of Plant Biodiversity, eds. Cavender-Bares J, Gamon JA, Townsend PA. Cham: Springer. pp. 425–47. https://doi.org/10.1007/978-3-030-33157-3_16

[81]

Hernández-Stefanoni JL, Gallardo-Cruz JA, Meave JA, Rocchini D, Bello-Pineda J, et al. 2012. Modeling α- and β-diversity in a tropical forest from remotely sensed and spatial data. International Journal of Applied Earth Observation and Geoinformation 19:359−68

doi: 10.1016/j.jag.2012.04.002
[82]

Wong CYS, Gamon JA. 2015. The photochemical reflectance index provides an optical indicator of spring photosynthetic activation in evergreen conifers. New Phytologist 206:196−208

doi: 10.1111/nph.13251
[83]

Chavana-Bryant C, Malhi Y, Wu J, Asner GP, Anastasiou A, et al. 2017. Leaf aging of Amazonian canopy trees as revealed by spectral and physiochemical measurements. New Phytologist 214:1049−63

doi: 10.1111/nph.13853
[84]

Thornley R, Gerard FF, White K, Verhoef A. 2022. Intra-annual taxonomic and phenological drivers of spectral variance in grasslands. Remote Sensing of Environment 271:112908

doi: 10.1016/j.rse.2022.112908
[85]

Anderegg J, Yu K, Aasen H, Walter A, Liebisch F, et al. 2019. Spectral vegetation indices to track senescence dynamics in diverse wheat germplasm. Frontiers in Plant Science 10:1749

doi: 10.3389/fpls.2019.01749
[86]

Pandey NK, Diwakar M. 2020. A review on cloud-based image processing services. In 2020 7th International Conference on Computing for Sustainable Global Development (INDIACom), New Delhi, India. pp. 108–12. https://doi.org/10.23919/INDIACom49435.2020.9083718

[87]

Corti M, Marino Gallina P, Cavalli D, Cabassi G. 2017. Hyperspectral imaging of spinach canopy under combined water and nitrogen stress to estimate biomass, water, and nitrogen content. Biosystems Engineering 158:38−50

doi: 10.1016/j.biosystemseng.2017.03.006
[88]

Gorelick N, Hancher M, Dixon M, Ilyushchenko S, Thau D, et al. 2017. Google Earth Engine: planetary-scale geospatial analysis for everyone. Remote Sensing of Environment 202:18−27

doi: 10.1016/j.rse.2017.06.031
[89]

Bermudez I, Traverso S, Mellia M, Munafò M. 2013. Exploring the cloud from passive measurements: the Amazon AWS case. In 2013 Proceedings IEEE INFOCOM. Turin, Italy: IEEE. pp. 230–34. https://doi.org/10.1109/INFCOM.2013.6566769

[90]

Dede M, Widiawaty MA, Pramulatsih GP, Ismail A, Ati A, et al. 2019. Integration of participatory mapping, crowdsourcing and geographic information system in flood disaster management (case study Ciledug Lor, Cirebon). Journal of Information Technology and Its Utilization 2:44−47

doi: 10.30818/jitu.2.2.2555
[91]

Kumar L, Mutanga O. 2018. Google Earth Engine applications since inception: usage, trends, and potential. Remote Sensing 10:1509

doi: 10.3390/rs10101509
[92]

Hansen MC, Potapov PV, Moore R, Hancher M, Turubanova SA, et al. 2013. High-resolution global maps of 21st-century forest cover change. Science 342:850−53

doi: 10.1126/science.1244693
[93]

Joshi AR, Dinerstein E, Wikramanayake E, Anderson ML, Olson D, et al. 2016. Tracking changes and preventing loss in critical tiger habitat. Science Advances 2:e1501675

doi: 10.1126/sciadv.1501675
[94]

Moxley JH, Bogomolni A, Hammill MO, Moore KMT, Polito MJ, et al. 2017. Google Haul Out: earth observation imagery and digital aerial surveys in coastal wildlife management and abundance estimation. BioScience 67:760−68

doi: 10.1093/biosci/bix059
[95]

Dede M, Widiawaty MA. 2020. Utilization EOS Platform as cloud-based GIS to analyze vegetation greenness in Cirebon Regency, Indonesia. Journal of Information Technology and Its Utilization 3:1−4

doi: 10.30818/jitu.3.1.3257
[96]

Stahl AT, Fremier AK, Heinse L. 2021. Cloud-based environmental monitoring to streamline remote sensing analysis for biologists. BioScience 71:1249−60

doi: 10.1093/biosci/biab100