[1]

Yang G, Chen S, Li D, Gao X, Su L, et al. 2019. Multiple transcriptional regulation of walnut JrGSTTau1 gene in response to osmotic stress. Physiologia Plantarum 166:748−61

doi: 10.1111/ppl.12833
[2]

Wang B, Zhang J, Pei D, Yu L. 2021. Combined effects of water stress and salinity on growth, physiological, and biochemical traits in two walnut genotypes. Physiologia Plantarum 172:176−87

doi: 10.1111/ppl.13316
[3]

Hilker M, Schmülling T. 2019. Stress priming, memory, and signalling in plants. Plant, Cell & Environment 42:753−61

doi: 10.1111/pce.13526
[4]

Waititu JK, Cai Q, Sun Y, Sun Y, Li C, et al. 2021. Transcriptome profiling of maize (Zea mays L.) leaves reveals key cold-responsive genes, transcription factors, and metabolic pathways regulating cold stress tolerance at the seedling stage. Genes 12:1638

doi: 10.3390/genes12101638
[5]

Yang G, Gao X, Ma K, Li D, Jia C, et al. 2018. The walnut transcription factor JrGRAS2 contributes to high temperature stress tolerance involving in Dof transcriptional regulation and HSP protein expression. BMC Plant Biology 18:367

doi: 10.1186/s12870-018-1568-y
[6]

Praat M, De Smet I, van Zanten M. 2021. Protein kinase and phosphatase control of plant temperature responses. Journal of Experimental Botany 72:7459−73

doi: 10.1093/jxb/erab345
[7]

Rahikainen M, Pascual J, Alegre S, Durian G, Kangasjärvi S. 2016. PP2A Phosphatase as a regulator of ROS signaling in plants. Antioxidants 5:8

doi: 10.3390/antiox5010008
[8]

Durian G, Rahikainen M, Alegre S, Brosché M, Kangasjärvi S. 2016. Protein phosphatase 2A in the regulatory network underlying biotic stress resistance in plants. Frontiers in Plant Science 7:812

doi: 10.3389/fpls.2016.00812
[9]

Grinthal A, Adamovic I, Weiner B, Karplus M, Kleckner N. 2010. PR65, the HEAT-repeat scaffold of phosphatase PP2A, is an elastic connector that links force and catalysis. Proceedings of the National Academy of Sciences of the United States of America 107:2467−72

doi: 10.1073/pnas.091407310
[10]

Bheri M, Pandey GK. 2019. PP2A phosphatases take a giant leap in the post-genomics era. Current Genomics 20:154−71

doi: 10.2174/1389202920666190517110605
[11]

Tsugama D, Yoon HS, Fujino K, Liu S, Takano T. 2019. Protein phosphatase 2A regulates the nuclear accumulation of the Arabidopsis bZIP protein VIP1 under hypo-osmotic stress. Journal of Experimental Botany 70:6101−12

doi: 10.1093/jxb/erz384
[12]

Camilleri C, Azimzadeh J, Pastuglia M, Bellini C, Grandjean O, et al. 2002. The Arabidopsis TONNEAU2 gene encodes a putative novel protein phosphatase 2A regulatory subunit essential for the control of the cortical cytoskeleton. The Plant Cell 14:833−45

doi: 10.1105/tpc.010402
[13]

Chao J, Huang Z, Yang S, Deng X, Tian W. 2020. Genome-wide identification and expression analysis of the phosphatase 2A family in rubber tree (Hevea brasiliensis). PLoS One 15:e0228219

doi: 10.1371/journal.pone.0228219
[14]

Michniewicz M, Zago MK, Abas L, Weijers D, Schweighofer A, et al. 2007. Antagonistic regulation of PIN phosphorylation by PP2A and PINOID directs auxin flux. Cell 130:1044−56

doi: 10.1016/j.cell.2007.07.033
[15]

Tang W, Yuan M, Wang R, Yang Y, Wang C, et al. 2011. PP2A activates brassinosteroid-responsive gene expression and plant growth by dephosphorylating BZR1. Nature Cell Biology 13:124−31

doi: 10.1038/ncb2151
[16]

Saito N, Munemasa S, Nakamura Y, Shimoishi Y, Mori I C, et al. 2008. Roles of RCN1, regulatory A subunit of protein phosphatase 2A, in methyl jasmonate signaling and signal crosstalk between methyl jasmonate and abscisic acid. Plant and Cell Physiology 49:1396−401

doi: 10.1093/pcp/pcn106
[17]

Yu RMK, Zhou Y, Xu Z, Chye M, Kong R. 2003. Two genes encoding protein phosphatase 2A catalytic subunits are differentially expressed in rice. Plant Molecular Biology 51:295−311

doi: 10.1023/A:1022006023273
[18]

Xu C, Jing R, Mao X, Jia X, Chang X. 2007. A wheat (Triticum aestivum) protein phosphatase 2A catalytic subunit gene provides enhanced drought tolerance in tobacco. Annals of Botany 99:439−50

doi: 10.1093/aob/mcl285
[19]

Zhu X, Wang Y, Su Z, Lv L, Zhang Z. 2018. Silencing of the wheat protein phosphatase 2A catalytic subunit TaPP2Ac enhances host resistance to the necrotrophic pathogen Rhizoctonia cerealis. Frontiers in Plant Science 9:1437

doi: 10.3389/fpls.2018.01437
[20]

Chen C, Chen H, Zhang Y, Thomas HR, Frank MH, et al. 2020. TBtools: an integrative toolkit developed for interactive analyses of big biological data. Molecular Plant 13:1194−202

doi: 10.1016/j.molp.2020.06.009
[21]

Xu F, Deng G, Cheng S, Zhang W, Huang X, et al. 2012. Molecular cloning, characterization and expression of the phenylalanine ammonia-lyase gene from Juglans regia. Molecules 17:7810−23

doi: 10.3390/molecules17077810
[22]

Livak KJ, Schmittgen TD. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCᴛ method. Methods 25:402−08

doi: 10.1006/meth.2001.1262
[23]

Yoon HS, Fujino K, Liu S, Takano T, Tsugama D. 2020. VIP1, a bZIP protein, interacts with the catalytic subunit of protein phosphatase 2A in Arabidopsis thaliana. Plant Signaling & Behavior 15:1706026

doi: 10.1080/15592324.2019.1706026
[24]

Máthé C, M-Hamvas M, Freytag C, Garda T. 2021. The protein phosphatase PP2A plays multiple roles in plant development by regulation of vesicle traffic-facts and questions. International Journal of Molecular Sciences 22:975

doi: 10.3390/ijms22020975
[25]

Máthé C, Garda T, Freytag C, M-Hamvas M. 2019. The role of serine-threonine protein phosphatase PP2A in plant oxidative stress signaling-facts and hypotheses. International Journal of Molecular Sciences 20:3028

doi: 10.3390/ijms20123028
[26]

Singh A, Giri J, Kapoor S, Tyagi AK, Pandey GK. 2010. Protein phosphatase complement in rice: genome-wide identification and transcriptional analysis under abiotic stress conditions and reproductive development. BMC Genomics 11:435

doi: 10.1186/1471-2164-11-435
[27]

Zhang L, Wang L, Chen X, Zhao L, Liu X, et al. 2022. The protein phosphatase 2C clade A TaPP2CA interact with calcium-dependent protein kinases, TaCDPK5/TaCDPK9-1, that phosphorylate TabZIP60 transcription factor from wheat (Triticum aestivum L.). Plant Science 321:111304

doi: 10.1016/j.plantsci.2022.111304
[28]

Nicolas-Francès V, Grandperret V, Liegard B, Jeandroz S, Vasselon D, et al. 2018. Evolutionary diversification of type-2 HDAC structure, function and regulation in Nicotiana tabacum. Plant Science 269:66−74

doi: 10.1016/j.plantsci.2018.01.007
[29]

Zhang L, Zhang LL, Kang LN. 2022. Promoter cloning of PuLOX2S gene from "Nanguo" pears and screening of transcription factors by Y1H technique. Journal of Food Biochemistry 46:e14278

doi: 10.1111/jfbc.14278
[30]

Cheng X, Zhao Y, Jiang Q, Yang J, Zhao W, et al. 2019. Structural basis of dimerization and dual W-box DNA recognition by rice WRKY domain. Nucleic Acids Research 47:4308−18

doi: 10.1093/nar/gkz113
[31]

Sun L, Pehlivan N, Esmaeili N, Jiang W, Yang X, et al. 2018. Co-overexpression of AVP1 and PP2A-C5 in Arabidopsis makes plants tolerant to multiple abiotic stresses. Plant Science 274:271−83

doi: 10.1016/j.plantsci.2018.05.026
[32]

Hu R, Zhu Y, Wei J, Chen J, Shi H, et al. 2017. Overexpression of PP2A-C5 that encodes the catalytic subunit 5 of protein phosphatase 2A in Arabidopsis confers better root and shoot development under salt conditions. Plant, Cell & Environment 40:150−64

doi: 10.1111/pce.12837
[33]

Xiong Y, Fan X, Wang Q, Yin Z, Sheng X, et al. 2021. Genomic analysis of soybean PP2A-B" family and its effects on drought and salt tolerance. Frontiers in Plant Science 12:784038

doi: 10.3389/fpls.2021.784038
[34]

Jang HJ, Pih KT, Kang SG, Lim JH, Jin JB, et al. 1998. Molecular cloning of a novel Ca2+-binding protein that is induced by NaCl stress. Plant Molecular Biology 37:839−47

doi: 10.1023/A:1006043006211
[35]

País SM, González MA, Téllez-Iñón MT, Capiati DA. 2009. Characterization of potato (Solanum tuberosum) and tomato (Solanum lycopersicum) protein phosphatases type 2A catalytic subunits and their involvement in stress responses. Planta 230:13−25

doi: 10.1007/s00425-009-0923-5
[36]

Li Y, Wang Y, Tan S, Li Z, Yuan Z, et al. 2020. Root growth adaptation is mediated by PYLs ABA receptor-PP2A protein phosphatase complex. Advanced Science 7:1901455

doi: 10.1002/advs.201901455
[37]

Liu D, Li A, Mao X, Jing R. 2014. Cloning and characterization of TaPP2AbB"-α, a member of the PP2A regulatory subunit in wheat. PLoS One 9:e94430

doi: 10.1371/journal.pone.0094430
[38]

Punzo P, Ruggiero A, Possenti M, Nurcato R, Costa A, et al. 2018. The PP2A-interactor TIP41 modulates ABA responses in Arabidopsis thaliana. The Plant Journal 94:991−1009

doi: 10.1111/tpj.13913
[39]

Razavizadeh R, Shojaie B, Komatsu S. 2018. Characterization of PP2A-A3 mRNA expression and growth patterns in Arabidopsis thaliana under drought stress and abscisic acid. Physiology and Molecular Biology of Plants 24:563−75

doi: 10.1007/s12298-018-0530-7