[1] |
Fukagawa NK, Ziska LH. 2019. Rice: importance for global nutrition. Journal of Nutritional Science and Vitaminology 65:S2−S3 doi: 10.3177/jnsv.65.S2 |
[2] |
United States Department of Agriculture (USDA), Foreign Agricultural Service. 2021. Livestock and poultry: world market and trade. https://fas.usda.gov/data/commodities/rice |
[3] |
Statista. 2022. Total area of cultivation for rice across India from financial year 2014 to 2020, with an estimate for 2021. www.statista.com/statistics/765691/india-area-of-cultivation-for-rice/#:~:text=At%20the%20end%20of%20fiscal,across%20the%20south%20Asian%20nation |
[4] |
Grover D, Singh JM, Kumar A, Kumar S. 2017. State Agricultural Profile - Punjab. pp. 1−74. http://dx.doi.org/10.13140/RG.2.2.29375.87203 |
[5] |
Pathak H, Tripathi R, Jambhulkar NN, Bisen JP, Panda BB. 2020. Eco-regional rice farming for enhancing productivity, profitability and sustainability. NRRI Research Bull 22. ICAR-National Rice Research Institute, Cuttack, Odisha. pp 28. |
[6] |
Prabhjyot-Kaur, Sandhu SS, Dhillon BS, Singh H. 2021. Rice yield variability in Punjab – an overview of five decades. Paddy and Water Environment 19:673−81 doi: 10.1007/s10333-021-00866-3 |
[7] |
Anonymous. 2022. Package of practices for crops in Punjab (Kharif 2022). Centre for Communication and International Linkages, Punjab Agricultural University, Ludhiana, Punjab. www.pau.edu/content/ccil/pf/pp_kharif.pdf |
[8] |
Geng S, Hess CE, Auburn J. 1990. Sustainable agricultural systems: concepts and definitions. Journal of Agronomy and Crop Science 165:73−85 doi: 10.1111/j.1439-037x.1990.tb00837.x |
[9] |
Chipanshi AC, Chanda R, Totolo O. 2003. Vulnerability assessment of the maize and Sorghum crops to climate change in Botswana. Climatic Change 61:339−60 doi: 10.1023/B:CLIM.0000004551.55871.eb |
[10] |
Teng PPS, Caballero-Anthony M, Lassa JA. 2016. The future of rice security under climate change. Report. NTS Report No. 4. Centre for Non Traditional Security Studies(NTS), Singapore. www.rsis.edu.sg/wp-content/uploads/2016/10/NTS-Report4-July2016-ClimateChangeAndRice.Pdf |
[11] |
Satake T, Yoshida S. 1978. High temperature-induced sterility in indica rices at flowering. Japanese Journal of Crop Science 47:6−17 doi: 10.1626/jcs.47.6 |
[12] |
Gupta R, Mishra A. 2019. Climate change induced impact and uncertainty of rice yield of agro-ecological zones of India. Agricultural Systems 173:1−11 doi: 10.1016/j.agsy.2019.01.009 |
[13] |
Debnath S, Mishra A, Mailapalli DR, Raghuwanshi NS, Sridhar V. 2021. Assessment of rice yield gap under a changing climate in India. Journal of Water and Climate Change 12:1245−67 doi: 10.2166/wcc.2020.086 |
[14] |
Leakey ADB, Uribelarrea M, Ainsworth EA, Naidu SL, Rogers A, et al. 2006. Photosynthesis, productivity, and yield of maize are not affected by open-air elevation of CO2 concentration in the absence of drought. Plant Physiology 140:779−90 doi: 10.1104/pp.105.073957 |
[15] |
Hernández N, Soto F, Caballero A. 2009. Modelos de simulación de cultivos: Características y usos. Cultivos Tropicales 30(1):73−82 |
[16] |
Jones JW, Antle JM, Basso B, Boote KJ, Conant RT, et al. 2017. Brief history of agricultural systems modeling. Agricultural Systems 155:240−54 doi: 10.1016/j.agsy.2016.05.014 |
[17] |
Jones JW, Hoogenboom G, Porter CH, Boote KJ, Batchelor WD, et al. 2003. The DSSAT cropping system model. European Journal of Agronomy 18:235−65 doi: 10.1016/s1161-0301(02)00107-7 |
[18] |
Thigpen J. 2018. Ongoing improvements and applications of the CERES-Rice model. https://agrilinks.org/post/ongoing-improvements-and-applications-ceres-rice-model |
[19] |
Xiong W, Balkovič J, van der Velde M, Zhang X, Izaurralde RC, et al. 2014. A calibration procedure to improve global rice yield simulations with EPIC. Ecological Modelling 273:128−39 doi: 10.1016/j.ecolmodel.2013.10.026 |
[20] |
Daggupati P, Pai N, Ale S, et al. 2015. A recommended calibration and validation strategy for hydrologic and water quality models. Transactions of the ASABE 58:1705−19 doi: 10.13031/trans.58.10712 |
[21] |
Ahmed M, Akram MN, Asim M, Aslam M, Hassan FU, et al. 2016. Calibration and validation of APSIM-Wheat and CERES-Wheat for spring wheat under rainfed conditions. Computers and Electronics in Agriculture 123:384−401 doi: 10.1016/j.compag.2016.03.015 |
[22] |
Prabhjyot-Kaur, Singh H, Hundal SS. 2018. Application of CERES- and GRO-models as a research and agronomic tool in irrigated plains of Punjab, India. Journal of Agricultural Physics 18(1):58−67 |
[23] |
Vijayalaxmi G, Sreenivas G, Leela Rani P. 2016. Evaluation of CERES-rice model under various plant densities and age of seedlings in transplanted rice in southern Telangana zone of Telangana State, India. International Journal of Current Microbiology and Applied Sciences 5:667−74 doi: 10.20546/ijcmas.2016.504.076 |
[24] |
Chandrvavanshi R, Kar G, Upadhyay S, Kumar Sinha P, Rohit. 2019. Simulation of crop growth and productivity using simulation model for short duration rice. International Journal of Current Microbiology and Applied Sciences 8:2081−88 doi: 10.20546/ijcmas.2019.812.246 |
[25] |
Rajwade YA, Swain DK, Tiwari KN. 2018. Effect of irrigation method on adaptation capacity of rice to climate change in subtropical India. International Journal of Plant Production 12:203−17 doi: 10.1007/s42106-018-0021-3 |
[26] |
Monod H, Naud C, Makowski D. 2006. Uncertainty and sensitivity analysis for crop models. In Working with dynamic crop models: Evaluation, analysis, parameterization, and applications, eds. Wallach D, Makowski D, Jones JW, Brun F. 1st Edition. Amsterdam, The Netherlands: Elsevier. pp. 55−100. |
[27] |
Lamsal A, Anandhi A, Welch S. 2012. Modeling the uncertainty in responsiveness of climatic, genetic, soil and agronomic parameters in CERES-Sorghum model across locations in Kansas, USA. Abstract ID GC43D-1055. Proceedings of the AGU Fall Meeting Abstracts, San Francisco, CA, USA. |
[28] |
Wilmott CJ. 1982. Some comments on the evaluation of model performance. Bulletin of the American Meteorological Society 63:1309−13 doi: 10.1175/1520-0477(1982)063<1309:SCOTEO>2.0.CO;2 |
[29] |
Jamieson PD, Porter JR, Wilson DR. 1991. A test of the computer simulation model ARCWHEAT1 on wheat crops grown in New Zealand. Field Crops Research 27:337−50 doi: 10.1016/0378-4290(91)90040-3 |
[30] |
Nash JE, Sutcliffe JV. 1970. River flow forecasting through conceptual models part I — a discussion of principles. Journal of Hydrology 10:282−90 doi: 10.1016/0022-1694(70)90255-6 |
[31] |
Ge H, Ma F, Li Z, Du C. 2021. Global sensitivity analysis for CERES-rice model under different cultivars and specific-stage variations of climate parameters. Agronomy 11:2446 doi: 10.3390/agronomy11122446 |
[32] |
Goswami P, Dutta G. 2020. Evaluation of DSSAT model (CERES rice) on rice production: a review. International Journal of Chemical Studies 8:404−9 doi: 10.22271/chemi.2020.v8.i5f.10327 |
[33] |
Mote BM, Kumar N. 2016. Calibration and validation of CERES-rice model for different rice cultivars at Navsari. Journal of Agrometeorology 18:155−57 doi: 10.54386/jam.v18i1.924 |
[34] |
Ray M, Roul PK, Baliarsingh A. 2018. Application of DSSAT crop simulation model to estimate rice yield in keonjhar district of Odisha (India) under changing climatic conditions. International Journal of Current Microbiology and Applied Sciences 7:659−67 doi: 10.20546/ijcmas.2018.704.075 |
[35] |
Jha RK, Kalita PK, Jat R. 2020. Development of production management strategies for a long-duration rice variety: Rajendra Mahsuri — using crop growth model, DSSAT, for the state of Bihar, India. Paddy and Water Environment 18:531−45 doi: 10.1007/s10333-020-00799-3 |
[36] |
Yang JY, Huffman ECT. 2004. EasyGrapher: software for graphical and statistical validation of DSSAT outputs. Computers and Electronics in Agriculture 45:125−32 doi: 10.1016/j.compag.2004.06.006 |
[37] |
Sandhu SS, Kaur P, Gill KK, Vashisth BB. 2020. The effect of recent climate shifts on optimal sowing windows for wheat in Punjab, India. Journal of Water and Climate Change 11:1177−90 doi: 10.2166/wcc.2019.241 |
[38] |
Kothiyal S, Prabhjyot-Kaur and Sandhu SS. 2021. Determination of sowing window for kharif maize in Punjab, India using sensitized, calibrated and validated CERES-Maize model. Maydica 66(3):1−12 https://journals-crea.4science.it/index.php/maydica/article/view/2397/1401 |
[39] |
Brar SK, Mahal SS, Brar AS, Vashist KK, Sharma N, et al. 2012. Transplanting time and seedling age affect water productivity, rice yield and quality in north-west India. Agricultural Water Management 115:217−22 doi: 10.1016/j.agwat.2012.09.001 |
[40] |
Kushwaha U. 2018. Delayed transplanting causes the yield difference between experimental plot and farmer's field in rice in rice. Global Journal of Agricultural Research 6(1):9−17 doi: 10.37745/gjar.2013 |
[41] |
Singh PK, Singh KK, Bhan SC, Baxla AK, Singh S, et al. 2017. Impact of projected climate change on rice (Oryza sativa L. ) yield using CERES-rice model in different agroclimatic zones of India. Current Science 112:108 doi: 10.18520/cs/v112/i01/108-115 |
[42] |
Vishwakarma A, Singh JK, Sen A, Bohra JS, Singh S. 2016. Effect of transplanting date and age of seedlings on growth, yield and quality of hybrids under system of rice (Oryza sativa) intensification and their effect on soil fertility. The Indian Journal of Agricultural Sciences 86:679−85 doi: 10.56093/ijas.v86i5.58355 |
[43] |
Deka AM, Bora PC, Kalita H, Guha B, Thakuria K. 2019. Effect of dates and methods of rice (Oryza sativa) transplantation on growth and yield, nutrient uptake and economics of ricelentil (Lens culinaris) system. Indian Journal of Agronomy 64:310−14 doi: 10.59797/ija.v64i3.5275 |