[1]

Nguyen HT, Alsawalhi JY, Al Hosani K, Al-Sumaiti AS, Ali Al Jaafari K, et al. 2022. Review map of comparative designs for wireless high-power transfer systems in EV applications: maximum efficiency, ZPA, and CC/CV modes at fixed resonance frequency independent from coupling coefficient. IEEE Transactions on Power Electronics 37(4):4857−76

doi: 10.1109/TPEL.2021.3124293
[2]

Fan Y, Sun Y, Dai X, Zuo Z, You A. 2021. Simultaneous wireless power transfer and full-duplex communication with a single coupling interface. IEEE Transactions on Power Electronics 36(6):6313−22

doi: 10.1109/TPEL.2020.3035782
[3]

Zhang Z, Pang H, Georgiadis A, Cecati C. 2019. Wireless power transfer—an overview. IEEE Transactions on Industrial Electronics 66(2):1044−58

doi: 10.1109/TIE.2018.2835378
[4]

Roy S, Azad ANMW, Baidya S, Alam MK, Khan F. 2022. Powering solutions for biomedical sensors and implants inside the human body: a comprehensive review on energy harvesting units, energy storage, and wireless power transfer techniques. IEEE Transactions on Power Electronics 37(10):12237−63

doi: 10.1109/TPEL.2022.3164890
[5]

Liu Z, Su YG, Zhao YM, Hu AP, Dai X. 2022. Capacitive power transfer system with double T-type resonant network for mobile devices charging/supply. IEEE Transactions on Power Electronics, 37(2):2394−403

doi: 10.1109/TPEL.2021.3105406
[6]

Painter H, Flynn J. 2006. Current and future wet-mate connector technology developments for scientific seabed observatory applications. Proceeding OCEANS 2006, Boston, MA, USA, 18–21 September 2006. pp. 1–6. https://doi.org/10.1109/OCEANS.2006.306829

[7]

Covic GA, Boys JT. 2013. Modern trends in inductive power transfer for transportation applications. IEEE Journal of Emerging and Selected Topics in Power Electronics 1(1):28−41

doi: 10.1109/JESTPE.2013.2264473
[8]

Teeneti CR, Truscott TT, Beal DN, Pantic Z. 2021. Review of Wireless Charging Systems for Autonomous Underwater Vehicles. IEEE Journal of Oceanic Engineering 46(1):68−87

doi: 10.1109/JOE.2019.2953015
[9]

Singh H, Bellingham JG, Hover F, Lemer S, Moran BA, et al. 2001. Docking for an autonomous ocean sampling network. IEEE Journal of Oceanic Engineering 26(4):498−514

doi: 10.1109/48.972084
[10]

Coulson R, Lambiotte JC, Grenon G, Pantelakis T, Curran J, et al. 2004. Development of a modular docking sub-system for 12 class autonomous underwater vehicles. Oceans '04 MTS/IEEE Techno-Ocean '04 (IEEE Cat. No.04CH37600), Kobe, Japan, 9−12 November 2004. vol 3. pp. 1745–49. https://doi.org/10.1109/OCEANS.2004.1406388

[11]

Shizuno K, Yoshida S, Tanomura M, Hama Y. 2014. Long distance high efficient underwater wireless charging system using dielectric-assist antenna. Proceeding 2014 Oceans, St. John's, NL, Canada, 14−19 September 2014. pp. 1–3. https://doi.org/10.1109/OCEANS.2014.7002986

[12]

Yoshida S, Tanomura M, Hama Y, Hirose T, Suzuki A, et al. 2016. Underwater wireless power transfer for non-fixed unmanned underwater vehicle in the ocean. 2016 IEEE/OES Autonomous Underwater Vehicles (AUV), Tokyo, Japan, 6–9 November 2016. pp. 177–80. https://doi.org/10.1109/AUV.2016.7778668

[13]

Urano M, Ata K, Takahashi A. 2016. Study on underwater wireless power transfer via electric coupling with a submerged electrode. 2017 IEEE International Meeting for Future of Electron Devices, Kansai (IMFEDK), Kyoto, Japan, 29–30 June 2017 pp. 36–37. https://doi.org/10.1109/IMFEDK.2017.7998030

[14]

Feezor MD, Yates Sorrell S, Blankinship PD. 2001. An interface system for autonomous undersea vehicles. IEEE Journal of Oceanic Engineering 26(4):522−25

doi: 10.1109/48.972087
[15]

Orekan T, Zhang P. 2019. Study and Analysis of Underwater Wireless Power Transfer. In Underwater wireless power transfer: smart ocean energy converters. Cham: Springer. pp 35–49. https://doi.org/10.1007/978-3-030-02562-5_3

[16]

Assaf T, Stefanini C, Dario P. 2013. Autonomous underwater biorobots: A wireless system for power transfer. IEEE Robotics & Automation Magazine 20(3):26−32

doi: 10.1109/MRA.2012.2201577
[17]

Cai C, Wu S, Zhang Z, Jiang L, Yang. 2021. Development of a fit-to-surface and lightweight magnetic coupler for autonomous underwater vehicle wireless charging systems. IEEE Transactions on Power Electronics 36(9):9927−40

doi: 10.1109/TPEL.2021.3064411
[18]

Liu S, Su J, Lai J, Zhang J, Xu H. 2021. Precise modeling of mutual inductance for planar spiral coils in wireless power transfer and its application. IEEE Transactions on Power Electronics 36(9):9876−85

doi: 10.1109/TPEL.2021.3061667
[19]

Delgado A, Requena NA, Ramos R, Oliver JA, Alou P, et al. 2020. Design of inductive power transfer system with a behavior of voltage source in open-loop considering wide mutual inductance variation. IEEE Transactions on Power Electronics 35(11):11453−62

doi: 10.1109/TPEL.2020.2984097
[20]

Liu F, Yang Y, Jiang D, Ruan X, Chen X. 2017. Modeling and optimization of magnetically coupled resonant wireless power transfer system with varying spatial scales. IEEE Transactions on Power Electronics 32(4):3240−50

doi: 10.1109/TPEL.2016.2581840
[21]

Shin Y, Woo S, Rhee J, Lee C, Kim H, et al. 2022. Accurate method for extracting the coupling coefficient of an LCC-series wireless power transfer system. IEEE Transactions on Power Electronics 37(9):11406−22

doi: 10.1109/TPEL.2022.3168087
[22]

Cha HR, Park KR, Kim TJ, Kim RY. 2021. Design of magnetic structure for omnidirectional wireless power transfer. IEEE Transactions on Power Electronics 36(8):8849−60

doi: 10.1109/TPEL.2021.3055863
[23]

Yin J, Lin D, Parisini T, Hui S. 2016. Front-End Monitoring of the Mutual Inductance and Load Resistance in a Series–Series Compensated Wireless Power Transfer System. IEEE Transactions on Power Electronics 31(10):7339−52

doi: 10.1109/TPEL.2015.2509962
[24]

Wang L, Sun P, Wu X, Cai J, Deng Q, et al. 2022. Mutual Inductance Identification of IPT System Based on Soft-Start Process. IEEE Transactions on Power Electronics 37(6):7504−17

doi: 10.1109/TPEL.2022.3142289
[25]

Yan Z, Zhang Y, Kan T, Lu F, Zhang K, et a. 2019. Frequency optimization of a loosely coupled underwater wireless power transfer system considering eddy current loss. Transactions on Industrial Electronics 66(5):3468−76

doi: 10.1109/TIE.2018.2851947
[26]

Yan Z, Song B, Zhang Y, Zhang K, Mao Z, et al. 2019. A rotation-free wireless power transfer system with stable output power and efficiency for autonomous underwater vehicles. IEEE Transactions on Power Electronics 34(5):4005−8

doi: 10.1109/TPEL.2018.2871316
[27]

Yan Z, Zhang Y, Zhang K, Song B, Mi C. 2019. Underwater wireless power transfer system with a curly coil structure for auvs. IET Power Electronics 12(10):2559−2565

doi: 10.1049/iet-pel.2018.6090
[28]

Cheng Z, Lei Y, Song K, Zhu C. 2015. Design and loss analysis of loosely coupled transformer for an underwater high-power inductive power transfer system. IEEE Transactions on Magnetics 51(7):8401110

doi: 10.1109/TMAG.2014.2346737
[29]

Zhou J, Yao P, Chen Y, Guo K, Hu S, et al. 2021. Design considerations for a self-latching coupling structure of inductive power transfer for autonomous underwater vehicle. IEEE Transactions on Industry Applications 57(1):580−87

doi: 10.1109/TIA.2020.3029020
[30]

Feng T, Zuo Z, Sun Y, Dai X, Wu X, et al. 2022. A reticulated planar transmitter using a three-dimensional rotating magnetic field for free-positioning omnidirectional wireless power transfer. IEEE Transactions on Power Electronics 37(8):9999−10015

doi: 10.1109/TPEL.2022.3155251
[31]

Zhao L, Thrimawithana DJ, Madawala UK. 2017. Hybrid bidirectional wireless EV charging system tolerant to pad misalignment. IEEE Transactions on Industrial Electronics 64(9):7079−7086

doi: 10.1109/TIE.2017.2686301
[32]

Zhao L, Thrimawithana DJ, Madawala UK, Hu AP, Mi CC. 2019. A misalignment-tolerant series-hybrid wireless EV charging system with integrated magnetics. IEEE Transactions on Power Electronics 34(2):1276−85

doi: 10.1109/TPEL.2018.2828841
[33]

Ramegowda M. 2014. Classical mechanics. Govt. College (Auton.), Mandya, 2014. www.gcm.ac.in/downloads/elearning/Classical_Physics_s3.pdf

[34]

Rumelhart DE, Hinton GE, Williams RJ. 1986. Learning representations by back propagating errors. Nature 323:533−36

doi: 10.1038/323533a0
[35]

Bui DT, Hoang ND, Martínez-Álvarez F, Thao NTP, Hoa PV, et al. 2019. A novel deep learning neural network approach for predicting flash flood susceptibility: A case study at a high frequency tropical storm area. Science of The Total Environment 701:134413

doi: 10.1016/j.scitotenv.2019.134413
[36]

Kingma D, Ba J. 2015. A method for stochastic optimization. Proceedings of the International Conference on Learning Representations, San Diego, 2015. https://doi.org/10.48550/arXiv.1412.6980