[1]

Opare SKA, Rauk A. 2019. Pseudopeptide designed to inhibit oligomerization and redox chemistry in Alzheimer's disease. The Journal of Physical Chemistry 123:5206−15

doi: 10.1021/acs.jpcb.9b01665
[2]

Samanta S, Rajasekhar K, Babagond V, Govindaraju T. 2019. Small molecule inhibits metal-dependent and -independent multifaceted toxicity of Alzheimer's disease. ACS Chemical Neuroscience 10:3611−21

doi: 10.1021/acschemneuro.9b00216
[3]

Chen Z, Zhong C. 2014. Oxidative stress in Alzheimer's disease. Neurosci Bull 30:271−81

doi: 10.1007/s12264-013-1423-y
[4]

Forloni G, Balducci C. 2018. Alzheimer's disease, oligomers, and inflammation. Journal of Alzheimer’s Disease 62:1261−76

doi: 10.3233/JAD-170819
[5]

Shoshan-Barmatz V, Nahon-Crystal E, Shteinfer-Kuzmine A, Gupta R. 2018. VDAC1, mitochondrial dysfunction, and Alzheimer's disease. Pharmacological Research 131:87−101

doi: 10.1016/j.phrs.2018.03.010
[6]

Naseri NN, Wang H, Guo J, Sharma M, Luo W. 2019. The complexity of tau in Alzheimer's disease. Neuroscience Letters 705:183−94

doi: 10.1016/j.neulet.2019.04.022
[7]

Xu T, Niu C, Zhang X, Dong M. 2018. β-Ecdysterone protects SH-SY5Y cells against β-amyloid-induced apoptosis via c-Jun N-terminal kinase- and Akt-associated complementary pathways. Laboratory Investigation 98:489−99

doi: 10.1038/s41374-017-0009-0
[8]

Neumann U, Ufer M, Jacobson LH, Rouzade-Dominguez ML, Huledal G, et al. 2018. The BACE-1 inhibitor CNP520 for prevention trials in Alzheimer's disease. EMBO Molecular Medicine 10:e9316

doi: 10.15252/emmm.201809316
[9]

Reiss AB, Arain HA, Stecker MM, Siegart NM, Kasselman LJ. 2018. Amyloid toxicity in Alzheimer's disease. Reviews in the Neurosciences 29:613−27

doi: 10.1515/revneuro-2017-0063
[10]

Chao AC, Chen CH, Wu MH, Hou BY, Yang DI. 2020. Roles of Id1/HIF-1 and CDK5/HIF-1 in cell cycle reentry induced by amyloid-beta peptide in post-mitotic cortical neuron. Biochimica et Biophysica Acta - Molecular Cell Research 1867:118628

doi: 10.1016/j.bbamcr.2019.118628
[11]

Caldeira GL, Ferreira IL, Rego AC. 2013. Impaired transcription in Alzheimer's disease: key role in mitochondrial dysfunction and oxidative stress. Journal of Alzheimer’s Disease 34:115−31

doi: 10.3233/JAD-121444
[12]

Spangenberg EE, Green KN. 2017. Inflammation in Alzheimer's disease: Lessons learned from microglia-depletion models. Brain, Behavior, and Immunity 61:1−11

doi: 10.1016/j.bbi.2016.07.003
[13]

Zhou L, Chen D, Huang XM, Long F, Cai H, et al. 2017. Wnt5a promotes cortical neuron survival by inhibiting cell-cycle activation. Frontiers in Cellular Neuroscience 11:281

doi: 10.3389/fncel.2017.00281
[14]

Schimidt HL, Garcia A, Martins A, Mello-Carpes PB, Carpes FP. 2017. Green tea supplementation produces better neuroprotective effects than red and black tea in Alzheimer-like rat model. Food Research International 100:442−48

doi: 10.1016/j.foodres.2017.07.026
[15]

Hidalgo FJ, Delgado RM, Zamora R. 2017. Protective effect of phenolic compounds on carbonyl-amine reactions produced by lipid-derived reactive carbonyls. Food Chemistry 229:388−95

doi: 10.1016/j.foodchem.2017.02.097
[16]

Pan SY, Nie Q, Tai HC, Song XL, Tong YF, et al. 2022. Tea and tea drinking: China's outstanding contributions to the mankind. Chinese Medicine 17:27

doi: 10.1186/s13020-022-00571-1
[17]

Fei T, Fei J, Huang F, Xie T, Xu J, et al. 2017. The anti-aging and anti-oxidation effects of tea water extract in Caenorhabditis elegans. Experimental Gerontology 97:89−96

doi: 10.1016/j.exger.2017.07.015
[18]

Pan H, Gao Y, Tu Y. 2016. Mechanisms of Body Weight Reduction by Black Tea Polyphenols. Molecules 21:1659

doi: 10.3390/molecules21121659
[19]

Zhao T, Li C, Wang S, Song X. 2022. Green tea (Camellia sinensis): a review of its phytochemistry, pharmacology, and toxicology. Molecules 27:3909

doi: 10.3390/molecules27123909
[20]

Wang RH, Zhu XF, Qian W, Tang HY, Jiang J, et al. 2018. Effect of tea polyphenols on copper adsorption and manganese release in two variable-charge soils. Journal of Geochemical Exploration 190:374−80

doi: 10.1016/j.gexplo.2018.04.006
[21]

Deb S, Dutta A, Phukan BC, Manivasagam T, Justin Thenmozhi A, et al. 2019. Neuroprotective attributes of L-theanine, a bioactive amino acid of tea, and its potential role in Parkinson's disease therapeutics. Neurochemistry International 129:104478

doi: 10.1016/j.neuint.2019.104478
[22]

Zhao T, Tang H, Xie L, Zheng Y, Ma Z, et al. 2019. Scutellaria baicalensis Georgi. (Lamiaceae): a review of its traditional uses, botany, phytochemistry, pharmacology and toxicology. Journal of Pharmacy and Pharmacology 71:1353−69

doi: 10.1111/jphp.13129
[23]

Tanaka T, Matsuo Y. 2020. Production Mechanisms of Black Tea Polyphenols. Chemical & Pharmaceutical Bulletin 68:1131−42

doi: 10.1248/cpb.c20-00295
[24]

Li X, Smid SD, Lin J, Gong Z, Chen S, et al. 2019. Neuroprotective and anti-amyloid β effect and main chemical profiles of white tea: comparison against green, oolong and black tea. Molecules 24:1926

doi: 10.3390/molecules24101926
[25]

Wan J, Feng M, Pan W, Zheng X, Xie X, et al. 2021. Inhibitory effects of six types of tea on aging and high-fat diet-related amyloid formation activities. Antioxidants 10:1513

doi: 10.3390/antiox10101513
[26]

Zheng X, Feng M, Wan J, Shi Y, Xie X, et al. 2021. Anti-damage effect of theaflavin-3'-gallate from black tea on UVB-irradiated HaCaT cells by photoprotection and maintaining cell homeostasis. Journal of Photochemistry and Photobiology B, Biology 224:112304

doi: 10.1016/j.jphotobiol.2021.112304
[27]

Ashraf GM, Greig NH, Khan TA, Hassan I, Tabrez S, et al. 2014. Protein misfolding and aggregation in Alzheimer's disease and type 2 diabetes mellitus. CNS & Neurological Disorders Drug Targets 13:1280−93

doi: 10.2174/1871527313666140917095514
[28]

Cai S, Yang H, Zeng K, Zhang J, Zhong N, et al. 2016. EGCG Inhibited Lipofuscin Formation Based on Intercepting Amyloidogenic β-Sheet-Rich Structure Conversion. PLoS One 11:e0152064

doi: 10.1371/journal.pone.0152064
[29]

Skene JHP. 1989. Axonal growth-associated proteins. Annual Review of Neuroscience 12:127−56

doi: 10.1146/annurev.ne.12.030189.001015
[30]

Jöbstl E, Fairclough JPA, Davies AP, Williamson MP. 2005. Creaming in black tea. Journal of Agricultural and Food Chemistry 53:7997−8002

doi: 10.1021/jf0506479
[31]

Lim IK. 2006. TIS21 /BTG2/PC3 as a link between ageing and cancer: cell cycle regulator and endogenous cell death molecule. Journal of Cancer Research and Clinical Oncology 132:417−26

doi: 10.1007/s00432-006-0080-1
[32]

Loreto A, Hill CS, Hewitt VL, Orsomando G, Angeletti C, et al. 2020. Mitochondrial impairment activates the Wallerian pathway through depletion of NMNAT2 leading to SARM1-dependent axon degeneration. Neurobiology of Disease 134:104678

doi: 10.1016/j.nbd.2019.104678
[33]

Cambron M, D'Haeseleer M, Laureys G, Clinckers R, Debruyne J, De Keyser J. 2012. White-matter astrocytes, axonal energy metabolism, and axonal degeneration in multiple sclerosis. Journal of Cerebral Blood Flow and Metabolism 32:413−24

doi: 10.1038/jcbfm.2011.193
[34]

Chaturvedi RK, Flint Beal M. 2013. Mitochondrial diseases of the brain. Free Radical Biology & Medicine 63:1−29

doi: 10.1016/j.freeradbiomed.2013.03.018
[35]

Kalia LV, Gingrich JR, Salter MW. 2004. Src in synaptic transmission and plasticity. Oncogene 23:8007−16

doi: 10.1038/sj.onc.1208158
[36]

Malm T, Loppi S, Kanninen KM. 2016. Exosomes in Alzheimer's disease. Neurochemistry International 97:193−99

doi: 10.1016/j.neuint.2016.04.011
[37]

Lezi E, Swerdlow RH. 2012. Mitochondria in neurodegeneration. Advances in Experimental Medicine and Biology 942:269−86

doi: 10.1007/978-94-007-2869-1_12
[38]

Zhao X, Fang J, Li S, Gaur U, Xing X, et al. 2019. Artemisinin attenuated hydrogen peroxide H2O2-induced oxidative injury in SH-SY5Y and hippocampal neurons via the activation of AMPK pathway. International Journal of Molecular Sciences 20:2680

doi: 10.3390/ijms20112680
[39]

Crouch PJ, Harding SM, White AR, Camakaris J, Bush AI, et al. 2008. Mechanisms of A beta mediated neurodegeneration in Alzheimer's disease. The International Journal of Biochemistry & Cell Biology 40:181−98

doi: 10.1016/j.biocel.2007.07.013
[40]

Padmanabhan S, Burke RE. 2018. Induction of axon growth in the adult brain: A new approach to restoration in Parkinson's disease. Movement Disorders 33:62−70

doi: 10.1002/mds.27209
[41]

Yin H, Xu L, Porter NA. 2011. Free radical lipid peroxidation: mechanisms and analysis. Chemical Reviews 111:5944−72

doi: 10.1021/cr200084z
[42]

Orlowski RZ. 1999. The role of the ubiquitin-proteasome pathway in apoptosis. Cell Death and Differentiation 6:303−13

doi: 10.1038/sj.cdd.4400505
[43]

Kocaturk NM, Gozuacik D. 2018. Crosstalk Between Mammalian Autophagy and the Ubiquitin-Proteasome System. Frontiers in Cell and Developmental Biology 6:128

doi: 10.3389/fcell.2018.00128
[44]

Martin-Rincon M, Pérez-López A, Morales-Alamo D, Perez-Suarez I, de Pablos-Velasco P, et al. 2019. Exercise mitigates the loss of muscle mass by attenuating the activation of autophagy during severe energy deficit. Nutrients 11:2824

doi: 10.3390/nu11112824
[45]

Zaffagnini G, Savova A, Danieli A, Romanov J, Tremel S, et al. 2018. p62 filaments capture and present ubiquitinated cargos for autophagy. The EMBO Journal 37:e98308

doi: 10.15252/embj.201798308
[46]

Daemen S, van Zandvoort MAMJ, Parekh SH, Hesselink MKC. 2016. Microscopy tools for the investigation of intracellular lipid storage and dynamics. Molecular Metabolism 5:153−63

doi: 10.1016/j.molmet.2015.12.005
[47]

Loix M, Wouters E, Vanherle S, Dehairs J, McManaman JL, et al. 2022. Perilipin-2 limits remyelination by preventing lipid droplet degradation. Cellular and Molecular Life Sciences 79:515

doi: 10.1007/s00018-022-04547-0
[48]

Veliova M, Petcherski A, Liesa M, Shirihai OS. 2020. The biology of lipid droplet-bound mitochondria. Seminars in Cell & Developmental Biology 108:55−64

doi: 10.1016/j.semcdb.2020.04.013
[49]

Moreno JA, Radford H, Peretti D, Steinert JR, Verity N, et al. 2012. Sustained translational repression by eIF2α-P mediates prion neurodegeneration. Nature 485:507−11

doi: 10.1038/nature11058
[50]

Jishi A, Qi X, Miranda HC. 2021. Implications of mRNA translation dysregulation for neurological disorders. Seminars in Cell & Deve lopmental Biology 114:11−19

doi: 10.1016/j.semcdb.2020.09.005
[51]

Meier S, Bell M, Lyons DN, Rodriguez-Rivera J, Ingram A, et al. 2016. Pathological tau promotes neuronal damage by impairing ribosomal function and decreasing protein synthesis. The Journal of Neuroscience 36:1001−7

doi: 10.1523/JNEUROSCI.3029-15.2016
[52]

Stein KC, Morales-Polanco F, van der Lienden J, Rainbolt TK, Frydman J. 2022. Ageing exacerbates ribosome pausing to disrupt cotranslational proteostasis. Nature 601:637−42

doi: 10.1038/s41586-021-04295-4