[1]
|
Opare SKA, Rauk A. 2019. Pseudopeptide designed to inhibit oligomerization and redox chemistry in Alzheimer's disease. The Journal of Physical Chemistry 123:5206−15 doi: 10.1021/acs.jpcb.9b01665
CrossRef Google Scholar
|
[2]
|
Samanta S, Rajasekhar K, Babagond V, Govindaraju T. 2019. Small molecule inhibits metal-dependent and -independent multifaceted toxicity of Alzheimer's disease. ACS Chemical Neuroscience 10:3611−21 doi: 10.1021/acschemneuro.9b00216
CrossRef Google Scholar
|
[3]
|
Chen Z, Zhong C. 2014. Oxidative stress in Alzheimer's disease. Neurosci Bull 30:271−81 doi: 10.1007/s12264-013-1423-y
CrossRef Google Scholar
|
[4]
|
Forloni G, Balducci C. 2018. Alzheimer's disease, oligomers, and inflammation. Journal of Alzheimer’s Disease 62:1261−76 doi: 10.3233/JAD-170819
CrossRef Google Scholar
|
[5]
|
Shoshan-Barmatz V, Nahon-Crystal E, Shteinfer-Kuzmine A, Gupta R. 2018. VDAC1, mitochondrial dysfunction, and Alzheimer's disease. Pharmacological Research 131:87−101 doi: 10.1016/j.phrs.2018.03.010
CrossRef Google Scholar
|
[6]
|
Naseri NN, Wang H, Guo J, Sharma M, Luo W. 2019. The complexity of tau in Alzheimer's disease. Neuroscience Letters 705:183−94 doi: 10.1016/j.neulet.2019.04.022
CrossRef Google Scholar
|
[7]
|
Xu T, Niu C, Zhang X, Dong M. 2018. β-Ecdysterone protects SH-SY5Y cells against β-amyloid-induced apoptosis via c-Jun N-terminal kinase- and Akt-associated complementary pathways. Laboratory Investigation 98:489−99 doi: 10.1038/s41374-017-0009-0
CrossRef Google Scholar
|
[8]
|
Neumann U, Ufer M, Jacobson LH, Rouzade-Dominguez ML, Huledal G, et al. 2018. The BACE-1 inhibitor CNP520 for prevention trials in Alzheimer's disease. EMBO Molecular Medicine 10:e9316 doi: 10.15252/emmm.201809316
CrossRef Google Scholar
|
[9]
|
Reiss AB, Arain HA, Stecker MM, Siegart NM, Kasselman LJ. 2018. Amyloid toxicity in Alzheimer's disease. Reviews in the Neurosciences 29:613−27 doi: 10.1515/revneuro-2017-0063
CrossRef Google Scholar
|
[10]
|
Chao AC, Chen CH, Wu MH, Hou BY, Yang DI. 2020. Roles of Id1/HIF-1 and CDK5/HIF-1 in cell cycle reentry induced by amyloid-beta peptide in post-mitotic cortical neuron. Biochimica et Biophysica Acta - Molecular Cell Research 1867:118628 doi: 10.1016/j.bbamcr.2019.118628
CrossRef Google Scholar
|
[11]
|
Caldeira GL, Ferreira IL, Rego AC. 2013. Impaired transcription in Alzheimer's disease: key role in mitochondrial dysfunction and oxidative stress. Journal of Alzheimer’s Disease 34:115−31 doi: 10.3233/JAD-121444
CrossRef Google Scholar
|
[12]
|
Spangenberg EE, Green KN. 2017. Inflammation in Alzheimer's disease: Lessons learned from microglia-depletion models. Brain, Behavior, and Immunity 61:1−11 doi: 10.1016/j.bbi.2016.07.003
CrossRef Google Scholar
|
[13]
|
Zhou L, Chen D, Huang XM, Long F, Cai H, et al. 2017. Wnt5a promotes cortical neuron survival by inhibiting cell-cycle activation. Frontiers in Cellular Neuroscience 11:281 doi: 10.3389/fncel.2017.00281
CrossRef Google Scholar
|
[14]
|
Schimidt HL, Garcia A, Martins A, Mello-Carpes PB, Carpes FP. 2017. Green tea supplementation produces better neuroprotective effects than red and black tea in Alzheimer-like rat model. Food Research International 100:442−48 doi: 10.1016/j.foodres.2017.07.026
CrossRef Google Scholar
|
[15]
|
Hidalgo FJ, Delgado RM, Zamora R. 2017. Protective effect of phenolic compounds on carbonyl-amine reactions produced by lipid-derived reactive carbonyls. Food Chemistry 229:388−95 doi: 10.1016/j.foodchem.2017.02.097
CrossRef Google Scholar
|
[16]
|
Pan SY, Nie Q, Tai HC, Song XL, Tong YF, et al. 2022. Tea and tea drinking: China's outstanding contributions to the mankind. Chinese Medicine 17:27 doi: 10.1186/s13020-022-00571-1
CrossRef Google Scholar
|
[17]
|
Fei T, Fei J, Huang F, Xie T, Xu J, et al. 2017. The anti-aging and anti-oxidation effects of tea water extract in Caenorhabditis elegans. Experimental Gerontology 97:89−96 doi: 10.1016/j.exger.2017.07.015
CrossRef Google Scholar
|
[18]
|
Pan H, Gao Y, Tu Y. 2016. Mechanisms of Body Weight Reduction by Black Tea Polyphenols. Molecules 21:1659 doi: 10.3390/molecules21121659
CrossRef Google Scholar
|
[19]
|
Zhao T, Li C, Wang S, Song X. 2022. Green tea (Camellia sinensis): a review of its phytochemistry, pharmacology, and toxicology. Molecules 27:3909 doi: 10.3390/molecules27123909
CrossRef Google Scholar
|
[20]
|
Wang RH, Zhu XF, Qian W, Tang HY, Jiang J, et al. 2018. Effect of tea polyphenols on copper adsorption and manganese release in two variable-charge soils. Journal of Geochemical Exploration 190:374−80 doi: 10.1016/j.gexplo.2018.04.006
CrossRef Google Scholar
|
[21]
|
Deb S, Dutta A, Phukan BC, Manivasagam T, Justin Thenmozhi A, et al. 2019. Neuroprotective attributes of L-theanine, a bioactive amino acid of tea, and its potential role in Parkinson's disease therapeutics. Neurochemistry International 129:104478 doi: 10.1016/j.neuint.2019.104478
CrossRef Google Scholar
|
[22]
|
Zhao T, Tang H, Xie L, Zheng Y, Ma Z, et al. 2019. Scutellaria baicalensis Georgi. (Lamiaceae): a review of its traditional uses, botany, phytochemistry, pharmacology and toxicology. Journal of Pharmacy and Pharmacology 71:1353−69 doi: 10.1111/jphp.13129
CrossRef Google Scholar
|
[23]
|
Tanaka T, Matsuo Y. 2020. Production Mechanisms of Black Tea Polyphenols. Chemical & Pharmaceutical Bulletin 68:1131−42 doi: 10.1248/cpb.c20-00295
CrossRef Google Scholar
|
[24]
|
Li X, Smid SD, Lin J, Gong Z, Chen S, et al. 2019. Neuroprotective and anti-amyloid β effect and main chemical profiles of white tea: comparison against green, oolong and black tea. Molecules 24:1926 doi: 10.3390/molecules24101926
CrossRef Google Scholar
|
[25]
|
Wan J, Feng M, Pan W, Zheng X, Xie X, et al. 2021. Inhibitory effects of six types of tea on aging and high-fat diet-related amyloid formation activities. Antioxidants 10:1513 doi: 10.3390/antiox10101513
CrossRef Google Scholar
|
[26]
|
Zheng X, Feng M, Wan J, Shi Y, Xie X, et al. 2021. Anti-damage effect of theaflavin-3'-gallate from black tea on UVB-irradiated HaCaT cells by photoprotection and maintaining cell homeostasis. Journal of Photochemistry and Photobiology B, Biology 224:112304 doi: 10.1016/j.jphotobiol.2021.112304
CrossRef Google Scholar
|
[27]
|
Ashraf GM, Greig NH, Khan TA, Hassan I, Tabrez S, et al. 2014. Protein misfolding and aggregation in Alzheimer's disease and type 2 diabetes mellitus. CNS & Neurological Disorders Drug Targets 13:1280−93 doi: 10.2174/1871527313666140917095514
CrossRef Google Scholar
|
[28]
|
Cai S, Yang H, Zeng K, Zhang J, Zhong N, et al. 2016. EGCG Inhibited Lipofuscin Formation Based on Intercepting Amyloidogenic β-Sheet-Rich Structure Conversion. PLoS One 11:e0152064 doi: 10.1371/journal.pone.0152064
CrossRef Google Scholar
|
[29]
|
Skene JHP. 1989. Axonal growth-associated proteins. Annual Review of Neuroscience 12:127−56 doi: 10.1146/annurev.ne.12.030189.001015
CrossRef Google Scholar
|
[30]
|
Jöbstl E, Fairclough JPA, Davies AP, Williamson MP. 2005. Creaming in black tea. Journal of Agricultural and Food Chemistry 53:7997−8002 doi: 10.1021/jf0506479
CrossRef Google Scholar
|
[31]
|
Lim IK. 2006. TIS21 /BTG2/PC3 as a link between ageing and cancer: cell cycle regulator and endogenous cell death molecule. Journal of Cancer Research and Clinical Oncology 132:417−26 doi: 10.1007/s00432-006-0080-1
CrossRef Google Scholar
|
[32]
|
Loreto A, Hill CS, Hewitt VL, Orsomando G, Angeletti C, et al. 2020. Mitochondrial impairment activates the Wallerian pathway through depletion of NMNAT2 leading to SARM1-dependent axon degeneration. Neurobiology of Disease 134:104678 doi: 10.1016/j.nbd.2019.104678
CrossRef Google Scholar
|
[33]
|
Cambron M, D'Haeseleer M, Laureys G, Clinckers R, Debruyne J, De Keyser J. 2012. White-matter astrocytes, axonal energy metabolism, and axonal degeneration in multiple sclerosis. Journal of Cerebral Blood Flow and Metabolism 32:413−24 doi: 10.1038/jcbfm.2011.193
CrossRef Google Scholar
|
[34]
|
Chaturvedi RK, Flint Beal M. 2013. Mitochondrial diseases of the brain. Free Radical Biology & Medicine 63:1−29 doi: 10.1016/j.freeradbiomed.2013.03.018
CrossRef Google Scholar
|
[35]
|
Kalia LV, Gingrich JR, Salter MW. 2004. Src in synaptic transmission and plasticity. Oncogene 23:8007−16 doi: 10.1038/sj.onc.1208158
CrossRef Google Scholar
|
[36]
|
Malm T, Loppi S, Kanninen KM. 2016. Exosomes in Alzheimer's disease. Neurochemistry International 97:193−99 doi: 10.1016/j.neuint.2016.04.011
CrossRef Google Scholar
|
[37]
|
Lezi E, Swerdlow RH. 2012. Mitochondria in neurodegeneration. Advances in Experimental Medicine and Biology 942:269−86 doi: 10.1007/978-94-007-2869-1_12
CrossRef Google Scholar
|
[38]
|
Zhao X, Fang J, Li S, Gaur U, Xing X, et al. 2019. Artemisinin attenuated hydrogen peroxide H2O2-induced oxidative injury in SH-SY5Y and hippocampal neurons via the activation of AMPK pathway. International Journal of Molecular Sciences 20:2680 doi: 10.3390/ijms20112680
CrossRef Google Scholar
|
[39]
|
Crouch PJ, Harding SM, White AR, Camakaris J, Bush AI, et al. 2008. Mechanisms of A beta mediated neurodegeneration in Alzheimer's disease. The International Journal of Biochemistry & Cell Biology 40:181−98 doi: 10.1016/j.biocel.2007.07.013
CrossRef Google Scholar
|
[40]
|
Padmanabhan S, Burke RE. 2018. Induction of axon growth in the adult brain: A new approach to restoration in Parkinson's disease. Movement Disorders 33:62−70 doi: 10.1002/mds.27209
CrossRef Google Scholar
|
[41]
|
Yin H, Xu L, Porter NA. 2011. Free radical lipid peroxidation: mechanisms and analysis. Chemical Reviews 111:5944−72 doi: 10.1021/cr200084z
CrossRef Google Scholar
|
[42]
|
Orlowski RZ. 1999. The role of the ubiquitin-proteasome pathway in apoptosis. Cell Death and Differentiation 6:303−13 doi: 10.1038/sj.cdd.4400505
CrossRef Google Scholar
|
[43]
|
Kocaturk NM, Gozuacik D. 2018. Crosstalk Between Mammalian Autophagy and the Ubiquitin-Proteasome System. Frontiers in Cell and Developmental Biology 6:128 doi: 10.3389/fcell.2018.00128
CrossRef Google Scholar
|
[44]
|
Martin-Rincon M, Pérez-López A, Morales-Alamo D, Perez-Suarez I, de Pablos-Velasco P, et al. 2019. Exercise mitigates the loss of muscle mass by attenuating the activation of autophagy during severe energy deficit. Nutrients 11:2824 doi: 10.3390/nu11112824
CrossRef Google Scholar
|
[45]
|
Zaffagnini G, Savova A, Danieli A, Romanov J, Tremel S, et al. 2018. p62 filaments capture and present ubiquitinated cargos for autophagy. The EMBO Journal 37:e98308 doi: 10.15252/embj.201798308
CrossRef Google Scholar
|
[46]
|
Daemen S, van Zandvoort MAMJ, Parekh SH, Hesselink MKC. 2016. Microscopy tools for the investigation of intracellular lipid storage and dynamics. Molecular Metabolism 5:153−63 doi: 10.1016/j.molmet.2015.12.005
CrossRef Google Scholar
|
[47]
|
Loix M, Wouters E, Vanherle S, Dehairs J, McManaman JL, et al. 2022. Perilipin-2 limits remyelination by preventing lipid droplet degradation. Cellular and Molecular Life Sciences 79:515 doi: 10.1007/s00018-022-04547-0
CrossRef Google Scholar
|
[48]
|
Veliova M, Petcherski A, Liesa M, Shirihai OS. 2020. The biology of lipid droplet-bound mitochondria. Seminars in Cell & Developmental Biology 108:55−64 doi: 10.1016/j.semcdb.2020.04.013
CrossRef Google Scholar
|
[49]
|
Moreno JA, Radford H, Peretti D, Steinert JR, Verity N, et al. 2012. Sustained translational repression by eIF2α-P mediates prion neurodegeneration. Nature 485:507−11 doi: 10.1038/nature11058
CrossRef Google Scholar
|
[50]
|
Jishi A, Qi X, Miranda HC. 2021. Implications of mRNA translation dysregulation for neurological disorders. Seminars in Cell & Deve lopmental Biology 114:11−19 doi: 10.1016/j.semcdb.2020.09.005
CrossRef Google Scholar
|
[51]
|
Meier S, Bell M, Lyons DN, Rodriguez-Rivera J, Ingram A, et al. 2016. Pathological tau promotes neuronal damage by impairing ribosomal function and decreasing protein synthesis. The Journal of Neuroscience 36:1001−7 doi: 10.1523/JNEUROSCI.3029-15.2016
CrossRef Google Scholar
|
[52]
|
Stein KC, Morales-Polanco F, van der Lienden J, Rainbolt TK, Frydman J. 2022. Ageing exacerbates ribosome pausing to disrupt cotranslational proteostasis. Nature 601:637−42 doi: 10.1038/s41586-021-04295-4
CrossRef Google Scholar
|