[1]

Yu H, Lee H, Herrmann A, Buettner R, Jove R. 2014. Revisiting STAT3 signalling in cancer: new and unexpected biological functions. Nature Reviews Cancer 14:736−46

doi: 10.1038/nrc3818
[2]

Zou S, Tong Q, Liu B, Huang W, Tian Y, et al. 2020. Targeting STAT3 in cancer immunotherapy. Molecular Cancer 19:145

doi: 10.1186/s12943-020-01258-7
[3]

Fan Y, Mao R, Yang J. 2013. NF-κB and STAT3 signaling pathways collaboratively link inflammation to cancer. Protein & Cell 4:176−85

doi: 10.1007/s13238-013-2084-3
[4]

Yang X, Xu L, Yang L, Xu S. 2023. Research progress of STAT3-based dual inhibitors for cancer therapy. Bioorganic & Medicinal Chemistry 91:117382

doi: 10.1016/j.bmc.2023.117382
[5]

Dong J, Cheng XD, Zhang WD, Qin JJ. 2021. Recent update on development of small-molecule STAT3 inhibitors for cancer therapy: from phosphorylation inhibition to protein degradation. Journal of Medicinal Chemistry 64:8884−915

doi: 10.1021/acs.jmedchem.1c00629
[6]

Siveen KS, Sikka S, Surana R, Dai X, Zhang J, et al. 2014. Targeting the STAT3 signaling pathway in cancer: role of synthetic and natural inhibitors. Biochimica et Biophysica Acta 1845:136−54

doi: 10.1016/j.bbcan.2013.12.005
[7]

Ijaz S, Akhtar N, Khan MS, Hameed A, Irfan M, et al. 2018. Plant derived anticancer agents: a green approach towards skin cancers. Biomedicine & Pharmacotherapy 103:1643−51

doi: 10.1016/j.biopha.2018.04.113
[8]

Salehi B, Machin L, Monzote L, Sharifi-Rad J, Ezzat SM, et al. 2020. Therapeutic potential of quercetin: new insights and perspectives for human health. ACS Omega 5:11849−72

doi: 10.1021/acsomega.0c01818
[9]

Majolo F, de Oliveira Becker Delwing LK, Marmitt DJ, Bustamante-Filho IC, Goettert MI. 2019. Medicinal plants and bioactive natural compounds for cancer treatment: important advances for drug discovery. Phytochemistry Letters 31:196−207

doi: 10.1016/j.phytol.2019.04.003
[10]

Patel B, Das S, Prakash R, Yasir M. 2010. Natural bioactive compound with anticancer potential. International Journal of Advances in Pharmaceutical Sciences 1:32−41

doi: 10.5138/ijaps.2010.0976.1055.01003
[11]

Mousavi SM, Hashemi SA, Behbudi G, Mazraedoost S, Omidifar N, et al. 2021. A review on health benefits of Malva sylvestris L. nutritional compounds for metabolites, antioxidants, and anti-inflammatory, anticancer, and antimicrobial applications. Evidence-Based Complementary and Alternative Medicine 2021:5548404

doi: 10.1155/2021/5548404
[12]

Krishna P, Kumari NR, Manisree V, Rani KS, Deepthi BVP, Sharma JVC. 2019. Medicinal benefits of Elaeocarpus Ganitrus (Rudraksha) - A divine herb. World Journal of Pharmaceutical Research 8:552−65

[13]

Mahajanakatti AB, Deepak TS, Achar RR, Pradeep S, Prasad SK, et al. 2022. Nanoconjugate synthesis of Elaeocarpus ganitrus and the assessment of its antimicrobial and antiproliferative properties. Molecules 27:2442

doi: 10.3390/molecules27082442
[14]

Das PK. 2015. Phytochemical screening of methanolic extracts of different parts of rudraksh plant (Elaeocarpus ganitrus). Journal of Biological Sciences 15:111−12

doi: 10.3844/OJBSCI.2015.111.112
[15]

Motallebi M, Bhia M, Rajani HF, Bhia I, Tabarraei H, et al. 2022. Naringenin: a potential flavonoid phytochemical for cancer therapy. Life Sciences 305:120752

doi: 10.1016/j.lfs.2022.120752
[16]

Zhang Y, Liu X, Ruan J, Zhuang X, Zhang X, et al. 2020. Phytochemicals of garlic: promising candidates for cancer therapy. Biomedicine & Pharmacotherapy 123:109730

doi: 10.1016/j.biopha.2019.109730
[17]

Fulda S, Debatin KM. 2006. Resveratrol modulation of signal transduction in apoptosis and cell survival: a mini-review. Cancer Detection and Prevention 30:217−23

doi: 10.1016/j.cdp.2006.03.007
[18]

Ahmad K, Bhat AR, Athar F. 2017. Pharmacokinetic evaluation of Callistemon viminalis derived natural compounds as targeted inhibitors against δ-opioid receptor and farnesyl transferase. Letters in Drug Design & Discovery 14:488−99

doi: 10.2174/1570180814666161214114322
[19]

Sudradjat SE, Timotius KH. 2022. Pharmacological properties and phytochemical components of Elaeocarpus: a comparative study. Phytomedicine Plus 2:100365

doi: 10.1016/j.phyplu.2022.100365
[20]

Kumar TS, Shanmugam S, Palvannan T, Bharathi Kumar VM. 2008. Evaluation of antioxidant properties of Elaeocarpus ganitrus roxb. leaves. Iranian Journal of Pharmaceutical Research 7(3):211−15

[21]

Sultana B, Anwar F, Ashraf M. 2009. Effect of extraction solvent/technique on the antioxidant activity of selected medicinal plant extracts. Molecules 14:2167−80

doi: 10.3390/molecules14062167
[22]

Ozigis HO, Olaifa KA, Agbeja AO, Asabia LO, Akindolu DR, et al. 2023. Qualitative phytochemical analysis of leave and stem bark of Zanthoxylum zanthoxyloides and Zanthoxylum gilletti. Journal of Chemical Society of Nigeria 48(3):891

doi: 10.46602/jcsn.v48i3.891
[23]

Dhivya R, Jaividhya P, Riyasdeen A, Palaniandavar M, Mathan G, et al. 2015. In vitro antiproliferative and apoptosis-inducing properties of a mononuclear copper(II) complex with dppz ligand, in two genotypically different breast cancer cell lines. BioMetals 28:929−43

doi: 10.1007/s10534-015-9877-1
[24]

Daina A, Michielin O, Zoete V. 2017. SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Scientific Reports 7:42717

doi: 10.1038/srep42717
[25]

Lipinski CA. 2004. Lead- and drug-like compounds: the rule-of-five revolution. Drug Discovery Today Technologies 1:337−41

doi: 10.1016/j.DDTec.2004.11.007
[26]

Khan A, Mohammad T, Shamsi A, Hussain A, Alajmi MF, et al. 2022. Identification of plant-based hexokinase 2 inhibitors: combined molecular docking and dynamics simulation studies. Journal of Biomolecular Structure & Dynamics 40:10319−31

doi: 10.1080/07391102.2021.1942217
[27]

Banerjee P, Eckert AO, Schrey AK, Preissner R. 2018. ProTox-II: a webserver for the prediction of toxicity of chemicals. Nucleic Acids Research 46:W257−W263

doi: 10.1093/nar/gky318
[28]

Beg A, Khan FI, Lobb KA, Islam A, Ahmad F, et al. 2019. High throughput screening, docking, and molecular dynamics studies to identify potential inhibitors of human calcium/calmodulin-dependent protein kinase IV. Journal of Biomolecular Structure & Dynamics 37:2179−92

doi: 10.1080/07391102.2018.1479310
[29]

Tsaioun Katya, Kates SA. (Eds) 2011. ADMET for medicinal chemists: a practical guide. Hoboken, New Jersey (simultaneously in Canada): John Wiley & Sons. https://doi.org/10.1002/9780470915110

[30]

Onawole AT, Sulaiman KO, Adegoke RO, Kolapo TU. 2017. Identification of potential inhibitors against the Zika virus using consensus scoring. Journal of Molecular Graphics & Modelling 73:54−61

doi: 10.1016/j.jmgm.2017.01.018
[31]

Siramshetty VB, Nickel J, Omieczynski C, Gohlke BO, Drwal MN, et al. 2016. WITHDRAWN—a resource for withdrawn and discontinued drugs. Nucleic Acids Research 44:D1080−D1086

doi: 10.1093/nar/gkv1192
[32]

Ray S, Zhao Y, Jamaluddin M, Edeh CB, Lee C, et al. 2014. Inducible STAT3 NH2 terminal mono-ubiquitination promotes BRD4 complex formation to regulate apoptosis. Cellular Signalling 26:1445−55

doi: 10.1016/j.cellsig.2014.03.007