[1]

Wang P, Richardson C, Hawkins TJ, Sparkes I, Hawes C, et al. 2016. Plant VAP27 proteins: domain characterization, intracellular localization and role in plant development. New Phytologist 210:1311−26

doi: 10.1111/nph.13857
[2]

Nishimura Y, Hayashi M, Inada H, Tanaka T. 1999. Molecular cloning and characterization of mammalian homologues of vesicle-associated membrane protein-associated (VAMP-associated) proteins. Biochemical and Biophysical Research Communications 254:21−26

doi: 10.1006/bbrc.1998.9876
[3]

Skehel PA, Martin KC, Kandel ER, Bartsch D. 1995. A VAMP-binding protein from Aplysia required for neurotransmitter release. Science 269:1580−83

doi: 10.1126/science.7667638
[4]

Laurent F, Labesse G, de Wit P. 2000. Molecular cloning and partial characterization of a plant VAP33 homologue with a major sperm protein domain. Biochemical and Biophysical Research Communications 270:286−92

doi: 10.1006/bbrc.2000.2387
[5]

Wang P, Hawkins TJ, Richardson C, Cummins I, Deeks MJ, et al. 2014. The plant cytoskeleton, NET3C, and VAP27 mediate the link between the plasma membrane and endoplasmic reticulum. Current Biology 24:1397−405

doi: 10.1016/j.cub.2014.05.003
[6]

Zhang L, Zhang H, Liu P, Hao H, Jin J, et al. 2011. Arabidopsis R-SNARE Proteins VAMP721 and VAMP722 are required for cell plate formation. PLoS ONE 6:e26129

doi: 10.1371/journal.pone.0026129
[7]

Zhang T, Li Y, Li C, Zang J, Gao E, et al. 2023. Exo84c interacts with VAP27 to regulate exocytotic compartment degradation and stigma senescence. Nature Communications 14:4888

doi: 10.1038/s41467-023-40729-5
[8]

Stefano G, Renna L, Wormsbaecher C, Gamble J, Zienkiewicz K, et al. 2018. Plant endocytosis requires the ER membrane-anchored proteins VAP27-1 and VAP27-3. Cell Reports 23:2299−307

doi: 10.1016/j.celrep.2018.04.091
[9]

Sparkes IA, Ketelaar T, De Ruijter NCA, Hawes C. 2009. Grab a Golgi: laser trapping of Golgi bodies reveals in vivo interactions with the endoplasmic reticulum. Traffic 10:567−71

doi: 10.1111/j.1600-0854.2009.00891.x
[10]

Kamemura K, Chihara T. 2019. Multiple functions of the ER-resident VAP and its extracellular role in neural development and disease. The Journal of Biochemistry 165:391−400

doi: 10.1093/jb/mvz011
[11]

Kuster A, Nola S, Dingli F, Vacca B, Gauchy C, et al. 2015. The Q-soluble N-ethylmaleimide-sensitive factor attachment protein receptor (Q-SNARE) SNAP-47 regulates trafficking of selected vesicle-associated membrane proteins (VAMPs). Journal of Biological Chemistry 290:28056−69

doi: 10.1074/jbc.M115.666362
[12]

Codjoe JM, Richardson RA, McLoughlin F, Vierstra RD, Haswell ES. 2022. Unbiased proteomic and forward genetic screens reveal that mechanosensitive ion channel MSL10 functions at ER–plasma membrane contact sites in Arabidopsis thaliana. eLife 11:e80501

doi: 10.7554/eLife.80501
[13]

Reyes-Impellizzeri S, Moreno AA. 2021. The endoplasmic reticulum role in the plant response to abiotic stress. Frontiers in Plant Science 12:755447

doi: 10.3389/fpls.2021.755447
[14]

Ung KL, Schulz L, Kleine-Vehn J, Pedersen BP, Hammes UZ, et al. 2023. Auxin transport at the endoplasmic reticulum: roles and structural similarity of PIN-FORMED and PIN-LIKES. Journal of Experimental Botany 74:6893−903

doi: 10.1093/jxb/erad192
[15]

Sparkes I, Hawes C, Frigerio L. 2011. FrontiERs: movers and shapers of the higher plant cortical endoplasmic reticulum. Current Opinion in Plant Biology 14:658−65

doi: 10.1016/j.pbi.2011.07.006
[16]

Saravanan RS, Slabaugh E, Singh VR, Lapidus LJ, Haas T, et al. 2009. The targeting of the oxysterol-binding protein ORP3a to the endoplasmic reticulum relies on the plant VAP33 homolog PVA12. The Plant Journal 58:817−30

doi: 10.1111/j.1365-313X.2009.03815.x
[17]

Sanderfoot AA, Raikhel NV. 1999. The specificity of vesicle trafficking: coat proteins and SNAREs. The Plant Cell 11:629−41

doi: 10.1105/tpc.11.4.629
[18]

El Kasmi F, Krause C, Hiller U, Stierhof YD, Mayer U, et al. 2013. SNARE complexes of different composition jointly mediate membrane fusion in Arabidopsis cytokinesis. Molecular Biology of the Cell 24:1593−601

doi: 10.1091/mbc.e13-02-0074
[19]

Ichikawa M, Hirano T, Enami K, Fuselier T, Kato N, et al. 2014. Syntaxin of plant proteins SYP123 and SYP132 mediate root hair tip growth in Arabidopsis thaliana. Plant and Cell Physiology 55:790−800

doi: 10.1093/pcp/pcu048
[20]

Kim S, Choi Y, Kwon C, Yun HS. 2019. Endoplasmic reticulum stress-induced accumulation of VAMP721/722 requires CALRETICULIN 1 and CALRETICULIN 2 in Arabidopsis. Journal of Integrative Plant Biology 61:974−80

doi: 10.1111/jipb.12728
[21]

Kwon C, Neu C, Pajonk S, Yun HS, Lipka U, et al. 2008. Co-option of a default secretory pathway for plant immune responses. Nature 451:835−40

doi: 10.1038/nature06545
[22]

Yun HS, Kwaaitaal M, Kato N, Yi C, Park S, et al. 2013. Requirement of vesicle-associated membrane protein 721 and 722 for sustained growth during immune responses in Arabidopsis. Molecules and Cells 35:481−88

doi: 10.1007/s10059-013-2130-2
[23]

Tao K, Waletich JR, Arredondo F, Tyler BM. 2019. Manipulating endoplasmic reticulum-plasma membrane tethering in plants through fluorescent protein complementation. Frontiers in Plant Science 10:635

doi: 10.3389/fpls.2019.00635
[24]

Siao W, Wang P, Voigt B, Hussey PJ, Baluska F. 2016. Arabidopsis SYT1 maintains stability of cortical endoplasmic reticulum networks and VAP27-1-enriched endoplasmic reticulum–plasma membrane contact sites. Journal of Experimental Botany 67:6161−71

doi: 10.1093/jxb/erw381
[25]

Huang G, Liu Z, Gu B, Zhao H, Jia J, et al. 2019. An RXLR effector secreted by Phytophthora parasitica is a virulence factor and triggers cell death in various plants. Molecular Plant Pathology 20:356−71

doi: 10.1111/mpp.12760
[26]

Lan X, Liu Y, Song S, Yin L, Xiang J, et al. 2019. Plasmopara viticola effector PvRXLR131 suppresses plant immunity by targeting plant receptor-like kinase inhibitor BKI1. Molecular Plant Pathology 20:765−83

doi: 10.1111/mpp.12790
[27]

Gessler C, Pertot I, Perazzolli M. 2011. Plasmopara viticola: a review of knowledge on downy mildew of grapevine and effective disease management. Phytopathologia Mediterranea 50:3−44

[28]

Fasoli M, Dal Santo S, Zenoni S, Tornielli GB, Farina L, et al. 2012. The grapevine expression atlas reveals a deep transcriptome shift driving the entire plant into a maturation program. The Plant Cell 24:3489−505

doi: 10.1105/tpc.112.100230
[29]

Li M, Jiao Y, Wang Y, Zhang N, Wang B, et al. 2020. CRISPR/Cas9-mediated VvPR4b editing decreases downy mildew resistance in grapevine (Vitis vinifera L.). Horticulture Research 7:149

doi: 10.1038/s41438-020-00371-4
[30]

Liu G, Wang B, Lecourieux D, Li M, Liu M, et al. 2021. Proteomic analysis of early-stage incompatible and compatible interactions between grapevine and P. viticola. Horticulture Research 8:100

doi: 10.1038/s41438-021-00533-y
[31]

Liu R, Chen T, Yin X, Xiang G, Peng J, et al. 2021. A Plasmopara viticola RXLR effector targets a chloroplast protein PsbP to inhibit ROS production in grapevine. The Plant Journal 106:1557−70

doi: 10.1111/tpj.15252
[32]

Toledo-Ortiz G, Huq E, Quail PH. 2003. The Arabidopsis basic/helix-loop-helix transcription factor family. The Plant Cell 15:1749−70

doi: 10.1105/tpc.013839
[33]

Heim MA, Jakoby M, Werber M, Martin C, Weisshaar B, et al. 2003. The basic helix-loop-helix transcription factor family in plants: a genome-wide study of protein structure and functional diversity. Molecular Biology and Evolution 20:735−47

doi: 10.1093/molbev/msg088
[34]

Zhang L, Ma J, Liu H, Yi Q, Wang Y, et al. 2021. SNARE proteins VAMP721 and VAMP722 mediate the post-Golgi trafficking required for auxin-mediated development in Arabidopsis. The Plant Journal 108:426−40

doi: 10.1111/tpj.15450
[35]

Baena G, Xia L, Waghmare S, Karnik R. 2022. SNARE SYP132 mediates divergent traffic of plasma membrane H+-ATPase AHA1 and antimicrobial PR1 during bacterial pathogenesis. Plant Physiology 189:1639−61

doi: 10.1093/plphys/kiac149
[36]

Yi C, Park S, Yun HS, Kwon C. 2013. Vesicle-associated membrane proteins 721 and 722 are required for unimpeded growth of Arabidopsis under ABA application. Journal of Plant Physiology 170:529−33

doi: 10.1016/j.jplph.2012.11.001
[37]

Liu Y, Lan X, Song S, Yin L, Dry IB, et al. 2018. In planta functional analysis and subcellular localization of the oomycete pathogen Plasmopara viticola candidate RXLR effector repertoire. Frontiers in Plant Science 9:286

doi: 10.3389/fpls.2018.00286