[1]

He Z, Ji R, Havlickova L, Wang L, Li Y, et al. 2021. Genome structural evolution in Brassica crops. Nature Plants 7:757−65

doi: 10.1038/s41477-021-00928-8
[2]

Wang M, Li Y, Yang Y, Tao H, Mustafa G, et al. 2023. Biofortification of health-promoting glucosinolates in cruciferous sprouts along the whole agro-food chain. Trends in Food Science & Technology 140:104164

doi: 10.1016/j.jpgs.2023.104164
[3]

Bhandari SR, Jo JS, Lee JG. 2015. Comparison of glucosinolate profiles in different tissues of nine Brassica crops. Molecules 20:15827−41

doi: 10.3390/molecules200915827
[4]

Blažević I, Montaut S, Burčul F, Olsen CE, Burow M, et al. 2020. Glucosinolate structural diversity, identification, chemical synthesis and metabolism in plants. Phytochemistry 169:112100

doi: 10.1016/j.phytochem.2019.112100
[5]

Miao H, Wang J, Cai C, Chang J, Zhao Y, et al. 2017. Accumulation of glucosinolates in broccoli. In Glucosinolates, eds Mérillon JM, Ramawat KG. Cham: Springer. pp. 133–62. https://doi.org/10.1007/978-3-319-25462-3_16

[6]

Wu X, Huang H, Childs H, Wu Y, Yu L, et al. 2021. Glucosinolates in Brassica vegetables: characterization and factors that influence distribution, content, and intake. Annual Review of Food Science and Technology 12:485−511

doi: 10.1146/annurev-food-070620-025744
[7]

Halkier BA, Gershenzon J. 2006. Biology and biochemistry of glucosinolates. Annual Review of Plant Biology 57:303−33

doi: 10.1146/annurev.arplant.57.032905.105228
[8]

Sun D, Wang C, Zhang X, Zhang W, Jiang H, et al. 2019. Draft genome sequence of cauliflower (Brassica oleracea L. var. botrytis) provides new insights into the C genome in Brassica species. Horticulture Research 6:82

doi: 10.1038/s41438-019-0164-0
[9]

Cartea ME, Velasco P. 2008. Glucosinolates in Brassica foods: bioavailability in food and significance for human health. Phytochemistry Reviews 7:213−29

doi: 10.1007/s11101-007-9072-2
[10]

Mazumder A, Dwivedi A, du Plessis J. 2016. Sinigrin and its therapeutic benefits. Molecules 21:416

doi: 10.3390/molecules21040416
[11]

Clarke DB. 2010. Glucosinolates, structures and analysis in food. Analytical Methods 2:310−25

doi: 10.1039/b9ay00280d
[12]

Fahey JW, Zalcmann AT, Talalay P. 2001. The chemical diversity and distribution of glucosinolates and isothiocyanates among plants. Phytochemistry 56:5−51

doi: 10.1016/S0031-9422(00)00316-2
[13]

Possenti M, Baima S, Raffo A, Durazzo A, Giusti AM, et al. 2017. Glucosinolates in food. In Glucosinolates, eds Mérillon JM, Ramawat K. Cham: Springer. pp. 87–132. https://doi.org/10.1007/978-3-319-25462-3_4

[14]

Nowicki D, Krause K, Szamborska P, Żukowska A, Cech GM, et al. 2020. Induction of the stringent response underlies the antimicrobial action of aliphatic isothiocyanates. Frontiers in Microbiology 11:591802

doi: 10.3389/fmicb.2020.591802
[15]

Stoewsand GS. 1995. Bioactive organosulfur phytochemicals in Brassica oleracea vegetables—a review. Food and Chemical Toxicology 33:537−43

doi: 10.1016/0278-6915(95)00017-V
[16]

Felker P, Bunch R, Leung AM. 2016. Concentrations of thiocyanate and goitrin in human plasma, their precursor concentrations in Brassica vegetables, and associated potential risk for hypothyroidism. Nutrition Review 74:248−58

doi: 10.1093/nutrit/nuv110
[17]

Nie L, Wu Y, Dai Z, Ma S. 2020. Antiviral activity of Isatidis Radix derived glucosinolate isomers and their breakdown products against influenza A in vitro/ovo and mechanism of action. Journal of Ethnopharmacology 251:112550

doi: 10.1016/j.jep.2020.112550
[18]

Jang M, Hong E, Kim GH. 2010. Evaluation of antibacterial activity of 3-butenyl, 4-pentenyl, 2-phenylethyl, and benzyl isothiocyanate in Brassica vegetables. Journal of Food Science 75:M412−M416

doi: 10.1111/j.1750-3841.2010.01725.x
[19]

Fenwick GR, Griffiths NM, Heaney RK. 1983. Bitterness in brussels sprouts (Brassica oleracea L. var. gemmifera): the role of glucosinolates and their breakdown products. Journal of the Science of Food and Agriculture 34:73−80

doi: 10.1002/jsfa.2740340111
[20]

Sarkar FH, Li Y. 2004. Indole-3-carbinol and prostate cancer. The Journal of Nutrition 134:3493S−3498S

doi: 10.1093/jn/134.12.3493S
[21]

Washida K, Miyata M, Koyama T, Yazawa K, Nomoto K. 2010. Suppressive effect of Yamato-mana (Brassica rapa L. Oleifera Group) constituent 3-butenyl glucosinolate (gluconapin) on postprandial hypertriglyceridemia in mice. Bioscience, Biotechnology, and Biochemistry 74:1286−89

doi: 10.1271/bbb.100018
[22]

Sundaram MK, Preetha R, Haque S, Akhter N, Khan S, et al. 2022. Dietary isothiocyanates inhibit cancer progression by modulation of epigenome. Seminars in Cancer Biology 83:353−76

doi: 10.1016/j.semcancer.2020.12.021
[23]

Chae SY, Seo SG, Yang H, Yu JG, Suk SJ, et al. 2015. Anti-adipogenic effect of erucin in early stage of adipogenesis by regulating Ras activity in 3T3-L1 preadipocytes. Journal of Functional Foods 19:700−9

doi: 10.1016/j.jff.2015.09.060
[24]

Singh D, Arora R, Bhatia A, Singh H, Singh B, et al. 2020. Molecular targets in cancer prevention by 4-(methylthio)butyl isothiocyanate - a comprehensive review. Life Sciences 241:117061

doi: 10.1016/j.lfs.2019.117061
[25]

Cedrowski J, Dąbrowa K, Przybylski P, Krogul-Sobczak A, Litwinienko G. 2021. Antioxidant activity of two edible isothiocyanates: sulforaphane and erucin is due to their thermal decomposition to sulfenic acids and methylsulfinyl radicals. Food Chemistry 353:129213

doi: 10.1016/j.foodchem.2021.129213
[26]

Wei L, Zhang J, Zheng L, Chen Y. 2022. The functional role of sulforaphane in intestinal inflammation: a review. Food & Function 13:514−29

doi: 10.1039/D1FO03398K
[27]

Vargas-Mendoza N, Madrigal-Santillán E, Álvarez-González I, Madrigal-Bujaidar E, Anguiano-Robledo L, et al. 2022. Phytochemicals in skeletal muscle health: effects of curcumin (from Curcuma longa Linn) and sulforaphane (from Brassicaceae) on muscle function, recovery and therapy of muscle atrophy. Plants 11:2517

doi: 10.3390/plants11192517
[28]

Mahn A, Castillo A. 2021. Potential of sulforaphane as a natural immune system enhancer: a review. Molecules 26:752

doi: 10.3390/molecules26030752
[29]

Milczarek M, Mielczarek L, Lubelska K, Dąbrowska A, Chilmonczyk Z, et al. 2018. In vitro evaluation of sulforaphane and a natural analog as potent inducers of 5-fluorouracil anticancer activity. Molecules 23:3040

doi: 10.3390/molecules23113040
[30]

Pocasap P, Weerapreeyakul N, Thumanu K. 2019. Alyssin and iberin in cruciferous vegetables exert anticancer activity in HepG2 by increasing intracellular reactive oxygen species and tubulin depolymerization. Biomolecules & Therapeutics 27:540−52

doi: 10.4062/biomolther.2019.027
[31]

Coscueta ER, Sousa AS, Reis CA, Pintado MM. 2022. Phenylethyl isothiocyanate: a bioactive agent for gastrointestinal health. Molecules 27:794

doi: 10.3390/molecules27030794
[32]

Kamal RM, Abdull Razis AF, Mohd Sukri NS, Perimal EK, Ahmad H, et al. 2022. Beneficial health effects of glucosinolates-derived isothiocyanates on cardiovascular and neurodegenerative diseases. Molecules 27:624

doi: 10.3390/molecules27030624
[33]

Wu Y, Xu Y, Lau AT. 2021. Anti-cancer and medicinal potentials of Moringa isothiocyanate. Molecules 26:7512

doi: 10.3390/molecules26247512
[34]

Harun S, Abdullah-Zawawi MR, Goh HH, Mohamed-Hussein ZA. 2020. A comprehensive gene inventory for glucosinolate biosynthetic pathway in Arabidopsis thaliana. Journal of Agricultural and Food Chemistry 68:7281−97

doi: 10.1021/acs.jafc.0c01916
[35]

Miao H, Zeng W, Wang J, Zhang F, Sun B, et al. 2021. Improvement of glucosinolates by metabolic engineering in Brassica crops. aBIOTECH 2:314−29

doi: 10.1007/s42994-021-00057-y
[36]

Hölzl G, Rezaeva BR, Kumlehn J, Dörmann P. 2023. Ablation of glucosinolate accumulation in the oil crop Camelina sativa by targeted mutagenesis of genes encoding the transporters GTR1 and GTR2 and regulators of biosynthesis MYB28 and MYB29. Plant Biotechnology Journal 21:189−201

doi: 10.1111/pbi.13936
[37]

Zhou X, Zhang H, Xie Z, Liu Y, Wang P, et al. 2023. Natural variation and artificial selection at the BnaC2. MYB28 locus modulate Brassica napus seed glucosinolate. Plant Physiology 191:352−68

doi: 10.1093/plphys/kiac463
[38]

Klein AP, Sattely ES. 2017. Biosynthesis of cabbage phytoalexins from indole glucosinolate. Proceedings of the National Academy of Sciences of the United States of America 114:1910−15

doi: 10.1073/pnas.1615625114
[39]

Shroff R, Vergara F, Muck A, Svatoš A, Gershenzon J. 2008. Nonuniform distribution of glucosinolates in Arabidopsis thaliana leaves has important consequences for plant defense. Proceedings of the National Academy of Sciences of the United States of America 105:6196−201

doi: 10.1073/pnas.0711730105
[40]

Sønderby IE, Burow M, Rowe HC, Kliebenstein DJ, Halkier BA. 2010. A complex interplay of three R2R3 MYB transcription factors determines the profile of aliphatic glucosinolates in Arabidopsis. Plant Physiology 153:348−63

doi: 10.1104/pp.109.149286
[41]

Sønderby IE, Geu-Flores F, Halkier BA. 2010. Biosynthesis of glucosinolates – gene discovery and beyond. Trends in Plant Science 15:283−90

doi: 10.1016/j.tplants.2010.02.005
[42]

Bones AM, Rossiter JT. 2006. The enzymic and chemically induced decomposition of glucosinolates. Phytochemistry 67:1053−67

doi: 10.1016/j.phytochem.2006.02.024
[43]

Miao H, Xia C, Yu S, Wang J, Zhao Y, et al. 2023. Enhancing health-promoting isothiocyanates in Chinese kale sprouts via manipulating BoESP. Horticulture Research 10:uhad029

doi: 10.1093/hr/uhad029
[44]

Del Carmen Martínez-Ballesta M, Moreno DA, Carvajal M. 2013. The physiological importance of glucosinolates on plant response to abiotic stress in Brassica. International Journal of Molecular Sciences 14:11607−625

doi: 10.3390/ijms140611607
[45]

Amarakoon D, Lee WJ, Tamia G, Lee SH. 2023. Indole-3-carbinol: occurrence, health-beneficial properties, and cellular/molecular mechanisms. Annual Review of Food Science and Technology 14:347−66

doi: 10.1146/annurev-food-060721-025531
[46]

Šamec D, Linić I, Salopek-Sondi B. 2021. Salinity stress as an elicitor for phytochemicals and minerals accumulation in selected leafy vegetables of Brassicaceae. Agronomy 11:361

doi: 10.3390/agronomy11020361
[47]

Engelen-Eigles G, Holden G, Cohen JD, Gardner G. 2006. The effect of temperature, photoperiod, and light quality on gluconasturtiin concentration in watercress (Nasturtium officinale R. Br.). Journal of Agricultural and Food Chemistry 54:328−34

doi: 10.1021/jf051857o
[48]

Velasco P, Cartea ME, González C, Vilar M, Ordás A. 2007. Factors affecting the glucosinolate content of kale (Brassica oleracea acephala group). Journal of Agricultural and Food Chemistry 55:955−62

doi: 10.1021/jf0624897
[49]

Qasim M, Ashraf M, Ashraf MY, Rehman SU, Rha ES. 2003. Salt-induced changes in two canola cultivars differing in salt tolerance. Biologia Plantarum 46:629−32

doi: 10.1023/A:1024844402000
[50]

López-Berenguer C, del Martínez-Ballesta M, Moreno DA, Carvajal M, García-Viguera C. 2009. Growing hardier crops for better health: salinity tolerance and the nutritional value of broccoli. Journal of Agricultural and Food Chemistry 57:572−78

doi: 10.1021/jf802994p
[51]

Gardner G. 2002. The center for plants and human health: an interdisciplinary approach. In NABC Report on Foods for Health: Integrating Agriculture, Medicine and Food for Future Health. National Agricultural Biotechnology Council. pp. 299–308. https://hdl.handle.net/1813/49983

[52]

Radovich TJK, Kleinhenz MD, Streeter JG. 2005. Irrigation timing relative to head development influences yield components, sugar levels, and glucosinolate concentrations in cabbage. Journal of the American Society for Horticultural Science 130:543−49

doi: 10.21273/JASHS.130.6.943
[53]

Pang Q, Chen S, Li L, Yan X. 2009. Characterization of glucosinolate—myrosinase system in developing salt cress Thellungiella halophile. Physiologia Plantarum 136:1−9

doi: 10.1111/j.1399-3054.2009.01211.x
[54]

Steinbrenner AD, Agerbirk N, Orians CM, Chew FS. 2012. Transient abiotic stresses lead to latent defense and reproductive responses over the Brassica rapa life cycle. Chemoecology 22:239−50

doi: 10.1007/s00049-012-0113-y
[55]

López-Berenguer C, Martínez-Ballesta MC, García-Viguera C, Carvajal M. 2008. Leaf water balance mediated by aquaporins under salt stress and associated glucosinolate synthesis in broccoli. Plant Science 174:321−28

doi: 10.1016/j.plantsci.2007.11.012
[56]

Schreiner M. 2005. Vegetable crop management strategies to increase the quantity of phytochemicals. European Journal of Nutrition 44:85−94

doi: 10.1007/s00394-004-0498-7
[57]

Champolivier L, Merrien A. 1996. Effects of water stress applied at different growth stages to Brassica napus L. var. oleifera on yield, yield components and seed quality. European Journal of Agronomy 5:153−60

doi: 10.1016/S1161-0301(96)02004-7
[58]

Zhang H, Schonhof I, Krumbein A, Gutezeit B, Li L, et al. 2008. Water supply and growing season influence glucosinolate concentration and composition in turnip root (Brassica rapa ssp. rapifera L.). Journal of Plant Nutrition and Soil Science 171:255−65

doi: 10.1002/jpln.200700079
[59]

Schreiner M, Beyene B, Krumbein A, Stützel H. 2009. Ontogenetic changes of 2-propenyl and 3-indolylmethyl glucosinolates in Brassica carinata leaves as affected by water supply. Journal of Agricultural and Food Chemistry 57:7259−63

doi: 10.1021/jf901076h
[60]

Gutbrodt B, Dorn S, Unsicker SB, Mody K. 2012. Species-specific responses of herbivores to within-plant and environmentally mediated between-plant variability in plant chemistry. Chemoecology 22:101−11

doi: 10.1007/s00049-012-0102-1
[61]

Charron CS, Saxton AM, Sams CE. 2005. Relationship of climate and genotype to seasonal variation in the glucosinolate–myrosinase system. I. Glucosinolate content in ten cultivars of Brassica oleracea grown in fall and spring seasons. Journal of the Science of Food and Agriculture 85:671−81

doi: 10.1002/jsfa.1880
[62]

Steindal ALH, Rødven R, Hansen E, Mølmann J. 2015. Effects of photoperiod, growth temperature and cold acclimatisation on glucosinolates, sugars and fatty acids in kale. Food Chemistry 174:44−51

doi: 10.1016/j.foodchem.2014.10.129
[63]

Justen VL, Fritz VA. 2013. Temperature-induced glucosinolate accumulation is associated with expression of BrMYB transcription factors. HortScience 48:47−52

doi: 10.21273/HORTSCI.48.1.47
[64]

Charron CS, Sams CE. 2004. Glucosinolate content and myrosinase activity in rapid-cycling Brassica oleracea grown in a controlled environment. Journal of the American Society for Horticultural Science 129:321−30

doi: 10.21273/JASHS.129.3.0321
[65]

Wang Y, Xu W, Yan X. 2011. Glucosinolate content and related gene expression in response to enhanced UV-B radiation in Arabidopsis. African Journal of Biotechnology 10:6481−91

[66]

Kim YB, Chun JH, Kim HR, Kim SJ, Lim YP, et al. 2014. Variation of glucosinolate accumulation and gene expression of transcription factors at different stages of Chinese cabbage seedlings under light and dark conditions. Natural Product Communications 9:533−37

doi: 10.1177/1934578X1400900428
[67]

Huseby S, Koprivova A, Lee BR, Saha S, Mithen R, et al. 2013. Diurnal and light regulation of sulphur assimilation and glucosinolate biosynthesis in Arabidopsis. Journal of Experimental Botany 64:1039−48

doi: 10.1093/jxb/ers378
[68]

Abe K, Kido S, Maeda T, Kami D, Matsuura H, et al. 2015. Glucosinolate profiles in Cardamine fauriei and effect of light quality on glucosinolate concentration. Scientia Horticulturae 189:12−16

doi: 10.1016/j.scienta.2015.03.028
[69]

Antonious GF, Kasperbauer MJ, Byers ME. 1996. Light reflected from colored mulches to growing turnip leaves affects glucosinolate and sugar contents of edible roots. Photochemistry and Photobiology 64:605−10

doi: 10.1111/j.1751-1097.1996.tb03112.x
[70]

Rosa EAS. 1997. Daily variation in glucosinolate concentrations in the leaves and roots of cabbage seedlings in two constant temperature regimes. Journal of the Science of Food and Agriculture 73:364−68

doi: 10.1002/(SICI)1097-0010(199703)73:3<364::AID-JSFA742>3.0.CO;2-O
[71]

Rosa EAS, Heaney RK, Rego FC, Fenwick GR. 1994. The variation of glucosinolate concentration during a single day in young plants of Brassica oleracea var Acephala and Capitata. Journal of the Science of Food and Agriculture 66:457−63

doi: 10.1002/jsfa.2740660406
[72]

Pérez-Balibrea S, Moreno DA, García-Viguera C. 2008. Influence of light on health-promoting phytochemicals of broccoli sprouts. Journal of the Science of Food and Agriculture 88:904−10

doi: 10.1002/jsfa.3169
[73]

Traka MH, Saha S, Huseby S, Kopriva S, Walley PG, et al. 2013. Genetic regulation of glucoraphanin accumulation in Beneforté broccoli. New Phytologist 198:1085−95

doi: 10.1111/nph.12232
[74]

Björkman M, Klingen I, Birch ANE, Bones AM, Bruce TJA, et al. 2011. Phytochemicals of Brassicaceae in plant protection and human health – influences of climate, environment and agronomic practice. Phytochemistry 72:538−56

doi: 10.1016/j.phytochem.2011.01.014
[75]

Schonhof I, Kläring HP, Krumbein A, Claußen W, Schreiner M. 2007. Effect of temperature increase under low radiation conditions on phytochemicals and ascorbic acid in greenhouse grown broccoli. Agriculture, Ecosystems & Environment 119:103−11

doi: 10.1016/j.agee.2006.06.018
[76]

Krumbein A, Schonhof I, Rühlmann J, Widell S. 2001. Influence of sulphur and nitrogen supply on flavour and health-affecting compounds in Brassicaceae. In Plant Nutrition, eds Horst WJ, Schenk MK, Bürkert A, Claassen N, Flessa H. Vol 92. Dordrecht: Springer. pp. 257–95. https://doi.org/10.1007/0-306-47624-X_141

[77]

Kaur S, Gupta SK, Sukhija PS, Munshi SK. 1990. Accumulation of glucosinolates in developing mustard (Brassica juncea L.) seeds in response to sulphur application. Plant Science 66:181−84

doi: 10.1016/0168-9452(90)90202-Y
[78]

Vallejo F, Tomás-Barberán FA, Benavente-García AG, García-Viguera C. 2003. Total and individual glucosinolate contents in inflorescences of eight broccoli cultivars grown under various climatic and fertilisation conditions. Journal of the Science of Food and Agriculture 83:307−31

doi: 10.1002/jsfa.1320
[79]

Coulombe J, Villeneuve S, Lamy P, Yelle S, Bélec C, et al. 1999. Evaluation of soil and petiole sap nitrate quick tests for broccoli in Québec. Acta Horticulturae 506:147−52

doi: 10.17660/actahortic.1999.506.20
[80]

Piekarska A, Kołodziejski D, Pilipczuk T, Bodnar M, Konieczka P, et al. 2014. The influence of selenium addition during germination of Brassica seeds on health-promoting potential of sprouts. International Journal of Food Sciences and Nutrition 65:692−702

doi: 10.3109/09637486.2014.917148
[81]

Schiavon M, Berto C, Malagoli M, Trentin A, Sambo P. 2016. Selenium biofortification in radish enhances nutritional quality via accumulation of methyl-selenocysteine and promotion of transcripts and metabolites related to glucosinolates, phenolics, and amino acids. Frontiers in Plant Science 7:1371

doi: 10.3389/fpls.2016.01371
[82]

Mahn A, Reyes A. 2012. An overview of health-promoting compounds of broccoli (Brassica oleracea var. italica) and the effect of processing. Food Science and Technology International 18:503−14

doi: 10.1177/1082013211433073
[83]

Robbins RJ, Keck AS, Banuelos G, Finley JW. 2005. Cultivation conditions and selenium fertilization alter the phenolic profile, glucosinolate, and sulforaphane content of broccoli. Journal of Medicinal Food 8:204−14

doi: 10.1089/jmf.2005.8.204
[84]

Cartea ME, Velasco P, Obregón S, Padilla G, de Haro A. 2008. Seasonal variation in glucosinolate content in Brassica oleracea crops grown in northwestern Spain. Phytochemistry 69:403−10

doi: 10.1016/j.phytochem.2007.08.014
[85]

Rybarczyk-Plonska A, Hagen SF, Borge GIA, Bengtsson GB, Hansen MK, et al. 2016. Glucosinolates in broccoli (Brassica oleracea L. var. italica) as affected by postharvest temperature and radiation treatments. Postharvest Biology and Technology 116:16−25

doi: 10.1016/j.postharvbio.2015.12.010
[86]

Mølmann JAB, Steindal ALH, Bengtsson GB, Seljåsen R, Lea P, et al. 2015. Effects of temperature and photoperiod on sensory quality and contents of glucosinolates, flavonols and vitamin C in broccoli florets. Food Chemistry 172:47−55

doi: 10.1016/j.foodchem.2014.09.015
[87]

Kissen R, Øverby A, Winge P, Bones AM. 2016. Allyl-isothiocyanate treatment induces a complex transcriptional reprogramming including heat stress, oxidative stress and plant defence responses in Arabidopsis thaliana. BMC Genomics 17:740

doi: 10.1186/s12864-016-3039-x
[88]

Rangkadilok N, Nicolas ME, Bennett RN, Eagling DR, Premier RR, et al. 2004. The effect of sulfur fertilizer on glucoraphanin levels in broccoli (B. oleracea L. var. italica) at different growth stages. Journal of Agricultural and Food Chemistry 52:2632−39

doi: 10.1021/jf030655u
[89]

Zaghdoud C, Carvajal M, Moreno DA, Ferchichi A, del Carmen Martínez-Ballesta M. 2016. Health-promoting compounds of broccoli (Brassica oleracea L. var. italica) plants as affected by nitrogen fertilisation in projected future climatic change environments. Journal of the Science of Food and Agriculture 96:392−403

doi: 10.1002/jsfa.7102
[90]

Garcia-Ibañez P, Sanchez-Garcia M, Sánchez-Monedero MA, Cayuela ML, Moreno DA. 2020. Olive tree pruning derived biochar increases glucosinolate concentrations in broccoli. Scientia Horticulturae 267:109329

doi: 10.1016/j.scienta.2020.109329
[91]

Meyer M, Adam ST. 2008. Comparison of glucosinolate levels in commercial broccoli and red cabbage from conventional and ecological farming. European Food Research and Technology 226:1429−37

doi: 10.1007/s00217-007-0674-0
[92]

Vicas SI, Teusdea AC, Carbunar M, Socaci SA, Socaciu C. 2013. Glucosinolates profile and antioxidant capacity of Romanian Brassica vegetables obtained by organic and conventional agricultural practices. Plant Foods for Human Nutrition 68:313−21

doi: 10.1007/s11130-013-0367-8
[93]

Schouten RE, Zhang X, Verkerk R, Verschoor JA, Otma EC, et al. 2009. Modelling the level of the major glucosinolates in broccoli as affected by controlled atmosphere and temperature. Postharvest Biology and Technology 53:1−10

doi: 10.1016/j.postharvbio.2009.03.001
[94]

Xu C, Guo D, Yuan J, Yuan G, Wang Q. 2006. Changes in glucoraphanin content and quinone reductase activity in broccoli (Brassica oleracea var. italica) florets during cooling and controlled atmosphere storage. Postharvest Biology and Technology 42:176−84

doi: 10.1016/j.postharvbio.2006.06.009
[95]

Baenas N, Cartea ME, Moreno DA, Tortosa M, Francisco M. 2020. Processing and cooking effects on glucosinolates and their derivatives. In Glucosinolates: Properties, Recovery, and Applications, ed. Galanakis CM. Academic Press. pp. 181−212. https://doi.org/10.1016/B978-0-12-816493-8.00006-8

[96]

Yuan G, Wang X, Guo R, Wang Q. 2010. Effect of salt stress on phenolic compounds, glucosinolates, myrosinase and antioxidant activity in radish sprouts. Food Chemistry 121:1014−19

doi: 10.1016/j.foodchem.2010.01.040
[97]

Rodrigues AS, Rosa EAS. 1999. Effect of post-harvest treatments on the level of glucosinolates in broccoli. Journal of the Science of Food and Agriculture 79:1028−32

doi: 10.1002/(SICI)1097-0010(19990515)79:7<1028::AID-JSFA322>3.0.CO;2-I
[98]

Song L, Thornalley PJ. 2007. Effect of storage, processing and cooking on glucosinolate content of Brassica vegetables. Food and Chemical Toxicology 45:216−24

doi: 10.1016/j.fct.2006.07.021
[99]

Fernández-León MF, Fernández-León AM, Lozano M, Ayuso MC, González-Gómez D. 2013. Different postharvest strategies to preserve broccoli quality during storage and shelf life: controlled atmosphere and 1-MCP. Food Chemistry 138:564−45

doi: 10.1016/j.foodchem.2012.09.143
[100]

Jin P, Yao D, Xu F, Wang H, Zheng Y. 2015. Effect of light on quality and bioactive compounds in postharvest broccoli florets. Food Chemistry 172:705−9

doi: 10.1016/j.foodchem.2014.09.134
[101]

El-Awady AA, Saber WIA, Abdel Hamid NM, Hassan HA. 2016. Increasing antioxidant content of broccoli sprouts using essential oils during cold storage. Agriculture (Pol'nohospodárstvo) 62:111−26

doi: 10.1515/agri-2016-0012
[102]

Torres-Contreras AM, González-Agüero M, Cisneros-Zevallos L, JacoboVelázquez DA. 2018. Role of reactive oxygen species and ethylene as signaling molecules for the wound-induced biosynthesis of glucosinolates in broccoli (Brassica oleracea L. 'Italica'). Acta Horticulturae 1194:909−14

doi: 10.17660/actahortic.2018.1194.128
[103]

Verkerk R, Dekker M, Jongen WMF. 2001. Post-harvest increase of indolyl glucosinolates in response to chopping and storage of Brassica vegetables. Journal of the Science of Food and Agriculture 81:953−58

doi: 10.1002/jsfa.854
[104]

Verkerk R, Schreiner M, Krumbein A, Ciska E, Holst B, et al. 2009. Glucosinolates in Brassica vegetables: the influence of the food supply chain on intake, bioavailability and human health. Molecular Nutrition & Food Research 53:S219

doi: 10.1002/mnfr.200800065
[105]

Aguilar-Camacho M, Welti-Chanes J, Jacobo-Velázquez DA. 2019. Combined effect of ultrasound treatment and exogenous phytohormones on the accumulation of bioactive compounds in broccoli florets. Ultrasonics Sonochemistry 50:289−301

doi: 10.1016/j.ultsonch.2018.09.031
[106]

Giambanelli E, Verkerk R, Fogliano V, Capuano E, D'Antuono LF, et al. 2015. Broccoli glucosinolate degradation is reduced performing thermal treatment in binary systems with other food ingredients. RSC Advances 5:66894−900

doi: 10.1039/C5RA11409H
[107]

Martínez-Hernández GB, Gómez PA, García-Talavera NV, Artés-Hernández F, Monedero-Saiz T, et al. 2013. Human metabolic fate of glucosinolates from kailan-hybrid broccoli. Differences between raw and microwaved consumption. Food Research International 53:403−8

doi: 10.1016/j.foodres.2013.05.002
[108]

Hanschen FS, Rohn S, Mewis I, Schreiner M, Kroh LW. 2012. Influence of the chemical structure on the thermal degradation of the glucosinolates in broccoli sprouts. Food Chemistry 130:1−8

doi: 10.1016/j.foodchem.2011.05.109
[109]

Paulsen E, Barrios S, Baenas N, Moreno DA, Heinzen H, et al. 2018. Effect of temperature on glucosinolate content and shelf life of ready-to-eat broccoli florets packaged in passive modified atmosphere. Postharvest Biology and Technology 138:125−33

doi: 10.1016/j.postharvbio.2018.01.006
[110]

Chanbisana C, Banik AK. 2019. Studies on effectiveness of packaging on storability of broccoli Cv. Aishwarya. International Journal of Chemical Studies 7:5112−18

[111]

Kapusta-Duch J, Leszczyńska T, Borczak B, Florkiewicz A, Ambroszczyk A. 2019. Impact of different packaging systems on selected antioxidant properties of frozen-stored broccoli. Ecological Chemistry and Engineering S 26:383−96

doi: 10.1515/eces-2019-0027
[112]

Hansen M, Møller P, Sørensen H, de Trejo MC. 1995. Glucosinolates in broccoli stored under controlled atmosphere. Journal of the American Society for Horticultural Science 120:1069−74

doi: 10.21273/JASHS.120.6.1069
[113]

Johansen TJ, Hagen SF, Bengtsson GB, Mølmann JAB. 2006. Growth temperature affects sensory quality and contents of glucosinolates, vitamin C and sugars in swede roots (Brassica napus L. ssp. rapifera Metzg.). Food Chemistry 196:228−35

doi: 10.1016/j.foodchem.2015.09.049
[114]

Qian H, Liu T, Deng M, Miao H, Cai C, et al. 2016. Effects of light quality on main health-promoting compounds and antioxidant capacity of Chinese kale sprouts. Food Chemistry 196:1232−38

doi: 10.1016/j.foodchem.2015.10.055
[115]

Sun B, Liu N, Zhao Y, Yan H, Wang Q. 2011. Variation of glucosinolates in three edible parts of Chinese kale (Brassica alboglabra Bailey) varieties. Food Chemistry 124:941−47

doi: 10.1016/j.foodchem.2010.07.031
[116]

Traka MH. 2016. Health benefits of glucosinolates. Advances in Botanical Research 80:247−79

doi: 10.1016/bs.abr.2016.06.004
[117]

Vaughn SF, Berhow MA. 2005. Glucosinolate hydrolysis products from various plant sources: pH effects, isolation, and purification. Industrial Crops and Products 21:193−202

doi: 10.1016/j.indcrop.2004.03.004
[118]

Van Doorn HE, Van der Kruk GC, van Holst GJ, Raaijmakers-Ruijs NCME, Postma E, et al. 1998. The glucosinolates sinigrin and progoitrin are important determinants for taste preference and bitterness of Brussels sprouts. Journal of the Science of Food and Agriculture 78:30−38

doi: 10.1002/(SICI)1097-0010(199809)78:1<30::AID-JSFA79>3.0.CO;2-N
[119]

Faulkner K, Mithen R, Williamson G. 1998. Selective increase of the potential anticarcinogen 4-methylsulphinylbutyl glucosinolate in broccoli. Carcinogenesis 19:605−09

doi: 10.1093/carcin/19.4.605
[120]

Mithen R, Faulkner K, Magrath R, Rose P, Williamson G, et al. 2003. Development of isothiocyanate-enriched broccoli, and its enhanced ability to induce phase 2 detoxification enzymes in mammalian cells. Theoretical and Applied Genetics 106:727−34

doi: 10.1007/s00122-002-1123-x
[121]

Sarikamis G, Marquez J, MacCormack R, Bennett RN, Roberts J, et al. 2006. High glucosinolate broccoli: a delivery system for sulforaphane. Molecular Breeding 18:219−28

doi: 10.1007/s11032-006-9029-y
[122]

Bell L, Wagstaff C. 2014. Glucosinolates, myrosinase hydrolysis products, and flavonols found in rocket (Eruca sativa and Diplotaxis tenuifolia). Journal of Agricultural and Food Chemistry 62:4481−92

doi: 10.1021/jf501096x
[123]

Bulgakov VP. 2008. Functions of rol genes in plant secondary metabolism. Biotechnology Advances 26:318−24

doi: 10.1016/j.biotechadv.2008.03.001
[124]

Mikkelsen MD, Buron LD, Salomonsen B, Olsen CE, Hansen BG, et al. 2012. Microbial production of indolylglucosinolate through engineering of a multi-gene pathway in a versatile yeast expression platform. Metabolic Engineering 14:104−11

doi: 10.1016/j.ymben.2012.01.006
[125]

Liu F, Yang H, Wang L, Yu B. 2016. Biosynthesis of the high-value plant secondary product benzyl isothiocyanate via functional expression of multiple heterologous enzymes in Escherichia coli. ACS Synthetic Viology 5:1557−65

doi: 10.1021/acssynbio.6b00143
[126]

Geu-Flores F, Møldrup ME, Böttcher C, Olsen CE, Scheel D, et al. 2011. Cytosolic γ-glutamyl peptidases process glutathione conjugates in the biosynthesis of glucosinolates and camalexin in Arabidopsis. The Plant Cell 23:2456−69

doi: 10.1105/tpc.111.083998
[127]

Borpatragohain P, Rose TJ, King GJ. 2016. Fire and brimstone: molecular interactions between sulfur and glucosinolate biosynthesis in model and crop Brassicaceae. Frontiers in Plant Science 7:1735

doi: 10.3389/fpls.2016.01735
[128]

Malka SK, Cheng Y. 2017. Possible interactions between the biosynthetic pathways of indole glucosinolate and auxin. Frontiers in Plant Science 8:2131

doi: 10.3389/fpls.2017.02131
[129]

Zang YX, Kim JH, Park YD, Kim DH, Hong SB. 2008. Metabolic engineering of aliphatic glucosinolates in Chinese cabbage plants expressing Arabidopsis MAM1, CYP79F1, and CYP83A1. BMB Reports 41:472−78

doi: 10.5483/BMBRep.2008.41.6.472
[130]

Yang Y, Hu Y, Yue Y, Pu Y, Yin X, et al. 2020. Expression profiles of glucosinolate biosynthetic genes in turnip (Brassica rapa var. rapa) at different developmental stages and effect of transformed flavin-containing monooxygenase genes on hairy root glucosinolate content. Journal of the Science of Food and Agriculture 100:1064−71

doi: 10.1002/jsfa.10111
[131]

Zang YX, Lim MH, Park BS, Hong SB, Kim DH. 2008. Metabolic engineering of indole glucosinolates in Chinese cabbage plants by expression of Arabidopsis CYP79B2, CYP79B3, and CYP83B1. Molecules & Cells 25:231−41

[132]

Zhang K, Su H, Zhou J, Liang W, Liu D, et al. 2019. Overexpressing the myrosinase gene TGG1 enhances stomatal defense against Pseudomonas syringae and delays flowering in Arabidopsis. Frontiers in Plant Science 10:1230

doi: 10.3389/fpls.2019.01230
[133]

Borgen BH, Thangstad OP, Ahuja I, Rossiter JT, Bones AM. 2010. Removing the mustard oil bomb from seeds: transgenic ablation of myrosin cells in oilseed rape (Brassica napus) produces MINELESS seeds. Journal of Experimental Botany 61:1683−97

doi: 10.1093/jxb/erq039
[134]

Nour-Eldin HH, Andersen TG, Burow M, Madsen SR, Jørgensen ME, et al. 2012. NRT/PTR transporters are essential for translocation of glucosinolate defence compounds to seeds. Nature 488:531−34

doi: 10.1038/nature11285
[135]

Nour-Eldin HH, Madsen SR, Engelen S, Jørgensen ME, Olsen CE, et al. 2017. Reduction of antinutritional glucosinolates in Brassica oilseeds by mutation of genes encoding transporters. Nature Biotechnology 35:377−82

doi: 10.1038/nbt.3823
[136]

Chavadej S, Brisson N, McNeil JN, De Luca V. 1994. Redirection of tryptophan leads to production of low indole glucosinolate canola. Proceedings of the National Academy of Sciences of the United States of America 91:2166−70

doi: 10.1073/pnas.91.6.216
[137]

Yin L, Chen H, Cao B, Lei J, Chen G. 2017. Molecular characterization of MYB28 involved in aliphatic glucosinolate biosynthesis in Chinese kale (Brassica oleracea var. alboglabra Bailey). Frontiers in Plant Science 8:1083

doi: 10.3389/fpls.2017.01083
[138]

Seo MS, Jin M, Chun JH, Kim SJ, Park BS, et al. 2016. Functional analysis of three BrMYB28 transcription factors controlling the biosynthesis of glucosinolates in Brassica rapa. Plant Molecular Biology 90:503−16

doi: 10.1007/s11103-016-0437-z
[139]

Zuluaga DL, Graham NS, Klinder A, van Ommen Kloeke AEE, Marcotrigiano AR, et al. 2019. Overexpression of the MYB29 transcription factor affects aliphatic glucosinolate synthesis in Brassica oleracea. Plant Molecular Biology 101:65−79

doi: 10.1007/s11103-019-00890-2
[140]

Reintanz B, Lehnen M, Reichelt M, Gershenzon J, Kowalczyk M, et al. 2001. bus, a bushy Arabidopsis CYP79F1 knockout mutant with abolished synthesis of short-chain aliphatic glucosinolates. The Plant Cell 13:351−67

doi: 10.1105/tpc.13.2.351
[141]

Zang YX, Kim DH, Park BS, Hong SB. 2009. Metabolic engineering of indole glucosinolates in Chinese cabbage hairy roots expressing Arabidopsis CYP79B2, CYP79B3, and CYP83B1. Biotechnology and Bioprocess Engineering 14:467−73

doi: 10.1007/s12257-008-0294-y